Thermodynamics of tower-block infernos: effects of water on aluminum fires

Detalhes bibliográficos
Autor(a) principal: Maguire, John F.
Data de Publicação: 2019
Outros Autores: Woodcock, Leslie
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.1/15014
Resumo: We review the thermodynamics of combustion reactions involved in aluminum fires in the light of the spate of recent high-profile tower-block disasters, such as the Grenfell fire in London 2017, the Dubai fires between 2010 and 2016, and the fires and explosions that resulted in the 9/11 collapse of the World Trade Center twin towers in New York. These fires are class B, i.e., burning metallic materials, yet water was applied in all cases as an extinguisher. Here, we highlight the scientific thermochemical reasons why water should never be used on aluminum fires, not least because a mixture of aluminum and water is a highly exothermic fuel. When the plastic materials initially catch fire and burn with limited oxygen (O2 in air) to carbon (C), which is seen as an aerosol (black smoke) and black residue, the heat of the reaction melts the aluminum (Al) and increases its fluidity and volatility. Hence, this process also increases its reactivity, whence it rapidly reacts with the carbon product of polymer combustion to form aluminum carbide (Al4C3). The heat of formation of Al4Cl3 is so great that it becomes white-hot sparks that are similar to fireworks. At very high temperatures, both molten Al and Al4C3 aerosol react violently with water to give alumina fine dust aerosol (Al2O3) + hydrogen (H2) gas and methane (CH4) gas, respectively, with white smoke and residues. These highly inflammable gases, with low spontaneous combustion temperatures, instantaneously react with the oxygen in the air, accelerating the fire out of control. Adding water to an aluminum fire is similar to adding "rocket fuel" to the existing flames. A CO2-foam/powder extinguisher, as deployed in the aircraft industry against aluminum and plastic fires by smothering, is required to contain aluminum fires at an early stage. Automatic sprinkler extinguisher systems should not be installed in tower blocks that are at risk of aluminum fires.
id RCAP_4f5c7323a386f6b9344edff7ee0f7d44
oai_identifier_str oai:sapientia.ualg.pt:10400.1/15014
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Thermodynamics of tower-block infernos: effects of water on aluminum firesCombustion thermodynamicsAluminum fireWater extinguisherGrenfell TowerTower-block safetyWe review the thermodynamics of combustion reactions involved in aluminum fires in the light of the spate of recent high-profile tower-block disasters, such as the Grenfell fire in London 2017, the Dubai fires between 2010 and 2016, and the fires and explosions that resulted in the 9/11 collapse of the World Trade Center twin towers in New York. These fires are class B, i.e., burning metallic materials, yet water was applied in all cases as an extinguisher. Here, we highlight the scientific thermochemical reasons why water should never be used on aluminum fires, not least because a mixture of aluminum and water is a highly exothermic fuel. When the plastic materials initially catch fire and burn with limited oxygen (O2 in air) to carbon (C), which is seen as an aerosol (black smoke) and black residue, the heat of the reaction melts the aluminum (Al) and increases its fluidity and volatility. Hence, this process also increases its reactivity, whence it rapidly reacts with the carbon product of polymer combustion to form aluminum carbide (Al4C3). The heat of formation of Al4Cl3 is so great that it becomes white-hot sparks that are similar to fireworks. At very high temperatures, both molten Al and Al4C3 aerosol react violently with water to give alumina fine dust aerosol (Al2O3) + hydrogen (H2) gas and methane (CH4) gas, respectively, with white smoke and residues. These highly inflammable gases, with low spontaneous combustion temperatures, instantaneously react with the oxygen in the air, accelerating the fire out of control. Adding water to an aluminum fire is similar to adding "rocket fuel" to the existing flames. A CO2-foam/powder extinguisher, as deployed in the aircraft industry against aluminum and plastic fires by smothering, is required to contain aluminum fires at an early stage. Automatic sprinkler extinguisher systems should not be installed in tower blocks that are at risk of aluminum fires.MDPISapientiaMaguire, John F.Woodcock, Leslie2021-02-02T14:46:54Z20192019-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.1/15014eng1099-430010.3390/e22010014info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-24T10:27:24Zoai:sapientia.ualg.pt:10400.1/15014Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:05:56.333532Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Thermodynamics of tower-block infernos: effects of water on aluminum fires
title Thermodynamics of tower-block infernos: effects of water on aluminum fires
spellingShingle Thermodynamics of tower-block infernos: effects of water on aluminum fires
Maguire, John F.
Combustion thermodynamics
Aluminum fire
Water extinguisher
Grenfell Tower
Tower-block safety
title_short Thermodynamics of tower-block infernos: effects of water on aluminum fires
title_full Thermodynamics of tower-block infernos: effects of water on aluminum fires
title_fullStr Thermodynamics of tower-block infernos: effects of water on aluminum fires
title_full_unstemmed Thermodynamics of tower-block infernos: effects of water on aluminum fires
title_sort Thermodynamics of tower-block infernos: effects of water on aluminum fires
author Maguire, John F.
author_facet Maguire, John F.
Woodcock, Leslie
author_role author
author2 Woodcock, Leslie
author2_role author
dc.contributor.none.fl_str_mv Sapientia
dc.contributor.author.fl_str_mv Maguire, John F.
Woodcock, Leslie
dc.subject.por.fl_str_mv Combustion thermodynamics
Aluminum fire
Water extinguisher
Grenfell Tower
Tower-block safety
topic Combustion thermodynamics
Aluminum fire
Water extinguisher
Grenfell Tower
Tower-block safety
description We review the thermodynamics of combustion reactions involved in aluminum fires in the light of the spate of recent high-profile tower-block disasters, such as the Grenfell fire in London 2017, the Dubai fires between 2010 and 2016, and the fires and explosions that resulted in the 9/11 collapse of the World Trade Center twin towers in New York. These fires are class B, i.e., burning metallic materials, yet water was applied in all cases as an extinguisher. Here, we highlight the scientific thermochemical reasons why water should never be used on aluminum fires, not least because a mixture of aluminum and water is a highly exothermic fuel. When the plastic materials initially catch fire and burn with limited oxygen (O2 in air) to carbon (C), which is seen as an aerosol (black smoke) and black residue, the heat of the reaction melts the aluminum (Al) and increases its fluidity and volatility. Hence, this process also increases its reactivity, whence it rapidly reacts with the carbon product of polymer combustion to form aluminum carbide (Al4C3). The heat of formation of Al4Cl3 is so great that it becomes white-hot sparks that are similar to fireworks. At very high temperatures, both molten Al and Al4C3 aerosol react violently with water to give alumina fine dust aerosol (Al2O3) + hydrogen (H2) gas and methane (CH4) gas, respectively, with white smoke and residues. These highly inflammable gases, with low spontaneous combustion temperatures, instantaneously react with the oxygen in the air, accelerating the fire out of control. Adding water to an aluminum fire is similar to adding "rocket fuel" to the existing flames. A CO2-foam/powder extinguisher, as deployed in the aircraft industry against aluminum and plastic fires by smothering, is required to contain aluminum fires at an early stage. Automatic sprinkler extinguisher systems should not be installed in tower blocks that are at risk of aluminum fires.
publishDate 2019
dc.date.none.fl_str_mv 2019
2019-01-01T00:00:00Z
2021-02-02T14:46:54Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.1/15014
url http://hdl.handle.net/10400.1/15014
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 1099-4300
10.3390/e22010014
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv MDPI
publisher.none.fl_str_mv MDPI
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799133299772227584