Perfect retroreflectors and billiard dynamics

Detalhes bibliográficos
Autor(a) principal: Bachurin, P.
Data de Publicação: 2011
Outros Autores: Khanin, K., Marklof, J., Plakhov, A.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/6314
Resumo: We construct semi infinite billiard domains which reverse the direction of most incoming particles. We prove that almost all particles will leave the open billiard domain after a finite number of reflections. Moreover, with high probability the exit velocity is exactly opposite to the entrance velocity, and the particle's exit point is arbitrarily close to its initial position. The method is based on asymptotic analysis of statistics of entrance times to a small interval for irrational circle rotations. The rescaled entrance times have a limiting distribution in the limit when the length of the interval vanishes. The proof of the main results follows from the study of related limiting distributions and their regularity properties. © 2011 AIMSciences.
id RCAP_4fad208a97a5f29cbfcb26c390ab1734
oai_identifier_str oai:ria.ua.pt:10773/6314
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Perfect retroreflectors and billiard dynamicsBilliardsCircle RotationDynamical RenormalizationHomogeneous FlowRecurrenceRetroreflectorsWe construct semi infinite billiard domains which reverse the direction of most incoming particles. We prove that almost all particles will leave the open billiard domain after a finite number of reflections. Moreover, with high probability the exit velocity is exactly opposite to the entrance velocity, and the particle's exit point is arbitrarily close to its initial position. The method is based on asymptotic analysis of statistics of entrance times to a small interval for irrational circle rotations. The rescaled entrance times have a limiting distribution in the limit when the length of the interval vanishes. The proof of the main results follows from the study of related limiting distributions and their regularity properties. © 2011 AIMSciences.2012-02-14T10:55:21Z2011-01-01T00:00:00Z2011info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/6314eng1930-531110.3934/jmd.2011.5.33Bachurin, P.Khanin, K.Marklof, J.Plakhov, A.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:09:50Zoai:ria.ua.pt:10773/6314Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T02:44:05.132928Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Perfect retroreflectors and billiard dynamics
title Perfect retroreflectors and billiard dynamics
spellingShingle Perfect retroreflectors and billiard dynamics
Bachurin, P.
Billiards
Circle Rotation
Dynamical Renormalization
Homogeneous Flow
Recurrence
Retroreflectors
title_short Perfect retroreflectors and billiard dynamics
title_full Perfect retroreflectors and billiard dynamics
title_fullStr Perfect retroreflectors and billiard dynamics
title_full_unstemmed Perfect retroreflectors and billiard dynamics
title_sort Perfect retroreflectors and billiard dynamics
author Bachurin, P.
author_facet Bachurin, P.
Khanin, K.
Marklof, J.
Plakhov, A.
author_role author
author2 Khanin, K.
Marklof, J.
Plakhov, A.
author2_role author
author
author
dc.contributor.author.fl_str_mv Bachurin, P.
Khanin, K.
Marklof, J.
Plakhov, A.
dc.subject.por.fl_str_mv Billiards
Circle Rotation
Dynamical Renormalization
Homogeneous Flow
Recurrence
Retroreflectors
topic Billiards
Circle Rotation
Dynamical Renormalization
Homogeneous Flow
Recurrence
Retroreflectors
description We construct semi infinite billiard domains which reverse the direction of most incoming particles. We prove that almost all particles will leave the open billiard domain after a finite number of reflections. Moreover, with high probability the exit velocity is exactly opposite to the entrance velocity, and the particle's exit point is arbitrarily close to its initial position. The method is based on asymptotic analysis of statistics of entrance times to a small interval for irrational circle rotations. The rescaled entrance times have a limiting distribution in the limit when the length of the interval vanishes. The proof of the main results follows from the study of related limiting distributions and their regularity properties. © 2011 AIMSciences.
publishDate 2011
dc.date.none.fl_str_mv 2011-01-01T00:00:00Z
2011
2012-02-14T10:55:21Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/6314
url http://hdl.handle.net/10773/6314
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 1930-5311
10.3934/jmd.2011.5.33
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137491391873024