Job Shop Flow Time Prediction using Neural Networks
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10316/102109 https://doi.org/10.1016/j.promfg.2017.07.309 |
Resumo: | In this paper we investigate the use of Artificial Neural Networks (ANN) for flow time prediction and, consequently, to estimate due dates (DD) in a hypothetical dynamic job-shop. The effectiveness of the proposed ANN based DD assignment model is evaluated comparing it performance with the performance of two dynamic DD assignment rules proposed in the literature: Dynamic Total Work Content, and Dynamic Processing Plus Waiting. Results show that ANN based DD assignment models are more effective than, not only available static DD assignment rules, as concluded by other researchers, but also than the more effective Dynamic DD assignment rules. |
id |
RCAP_503d78ad4d3e6300ff85e250ca8cafa2 |
---|---|
oai_identifier_str |
oai:estudogeral.uc.pt:10316/102109 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Job Shop Flow Time Prediction using Neural NetworksDynamic job shopDynamic due date assignment rulesSimulationArtificial Neural NetworksDispatching rulesIn this paper we investigate the use of Artificial Neural Networks (ANN) for flow time prediction and, consequently, to estimate due dates (DD) in a hypothetical dynamic job-shop. The effectiveness of the proposed ANN based DD assignment model is evaluated comparing it performance with the performance of two dynamic DD assignment rules proposed in the literature: Dynamic Total Work Content, and Dynamic Processing Plus Waiting. Results show that ANN based DD assignment models are more effective than, not only available static DD assignment rules, as concluded by other researchers, but also than the more effective Dynamic DD assignment rules.2017info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10316/102109http://hdl.handle.net/10316/102109https://doi.org/10.1016/j.promfg.2017.07.309eng23519789Silva, CristovãoRibeiro, VeraCoelho, PedroMagalhães, VanessaNeto, Pedroinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2022-09-26T21:22:36Zoai:estudogeral.uc.pt:10316/102109Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T21:19:10.323807Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Job Shop Flow Time Prediction using Neural Networks |
title |
Job Shop Flow Time Prediction using Neural Networks |
spellingShingle |
Job Shop Flow Time Prediction using Neural Networks Silva, Cristovão Dynamic job shop Dynamic due date assignment rules Simulation Artificial Neural Networks Dispatching rules |
title_short |
Job Shop Flow Time Prediction using Neural Networks |
title_full |
Job Shop Flow Time Prediction using Neural Networks |
title_fullStr |
Job Shop Flow Time Prediction using Neural Networks |
title_full_unstemmed |
Job Shop Flow Time Prediction using Neural Networks |
title_sort |
Job Shop Flow Time Prediction using Neural Networks |
author |
Silva, Cristovão |
author_facet |
Silva, Cristovão Ribeiro, Vera Coelho, Pedro Magalhães, Vanessa Neto, Pedro |
author_role |
author |
author2 |
Ribeiro, Vera Coelho, Pedro Magalhães, Vanessa Neto, Pedro |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Silva, Cristovão Ribeiro, Vera Coelho, Pedro Magalhães, Vanessa Neto, Pedro |
dc.subject.por.fl_str_mv |
Dynamic job shop Dynamic due date assignment rules Simulation Artificial Neural Networks Dispatching rules |
topic |
Dynamic job shop Dynamic due date assignment rules Simulation Artificial Neural Networks Dispatching rules |
description |
In this paper we investigate the use of Artificial Neural Networks (ANN) for flow time prediction and, consequently, to estimate due dates (DD) in a hypothetical dynamic job-shop. The effectiveness of the proposed ANN based DD assignment model is evaluated comparing it performance with the performance of two dynamic DD assignment rules proposed in the literature: Dynamic Total Work Content, and Dynamic Processing Plus Waiting. Results show that ANN based DD assignment models are more effective than, not only available static DD assignment rules, as concluded by other researchers, but also than the more effective Dynamic DD assignment rules. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10316/102109 http://hdl.handle.net/10316/102109 https://doi.org/10.1016/j.promfg.2017.07.309 |
url |
http://hdl.handle.net/10316/102109 https://doi.org/10.1016/j.promfg.2017.07.309 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
23519789 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799134086227296256 |