Scalable analysis of multitemporal images using an array database
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/34462 |
Resumo: | Dissertation submitted in partial fulfilment of the requirements for the degree of Master of Science in Geospatial Technologies |
id |
RCAP_504f6c70fa542833c2fb07fb33373830 |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/34462 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Scalable analysis of multitemporal images using an array databaseArray DatabaseSciDBHigh Performance ComputingRemote SensingMultitemporal ImagesDissertation submitted in partial fulfilment of the requirements for the degree of Master of Science in Geospatial TechnologiesMassive archives of earth observation data are now available and the size of this data is increasing at a tremendous rate. This data is a very important resource and has a variety of applications including monitoring change, forestry application, agricultural application and urban planning. At the same time, they also possess challenge of storage, management, and high computational needs. In this study SciDB, an array-based database is used to store, manage and process multitemporal satellite imagery. The major aim of this study is to investigate the performance of SciDB based scalable solution to run arithmetic operation, simple time series analysis and complex time series analysis on multitemporal satellite imagery. This study provides better insight of SciDB architecture and provides suggestions for better performance in SciDB for remote sensing jobs. The research also compared the performance of time series analysis on SciDB array with file-based analysis using multicore parallelization (Using „Parallel‟ Package of R). It is found that SciDB provides a faster solution for time series analysis. However, SciDB might not be the best solution if the data size is smaller. Also, relative immaturity of SciDB and limited inherent support of remote sensing operations increases effort for the scientist to develop SciDB based solution. Nevertheless, SciDB has the potential to meet the ever increasing storage, management and computational need of big remote sensing data.Pebesma, EdzerHenriques, Roberto André PereiraAppel, MariusRUNJoshi, Abhasha2018-04-13T14:37:23Z2017-03-032017-03-03T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/34462TID:201898381enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T04:18:53Zoai:run.unl.pt:10362/34462Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:30:10.976707Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Scalable analysis of multitemporal images using an array database |
title |
Scalable analysis of multitemporal images using an array database |
spellingShingle |
Scalable analysis of multitemporal images using an array database Joshi, Abhasha Array Database SciDB High Performance Computing Remote Sensing Multitemporal Images |
title_short |
Scalable analysis of multitemporal images using an array database |
title_full |
Scalable analysis of multitemporal images using an array database |
title_fullStr |
Scalable analysis of multitemporal images using an array database |
title_full_unstemmed |
Scalable analysis of multitemporal images using an array database |
title_sort |
Scalable analysis of multitemporal images using an array database |
author |
Joshi, Abhasha |
author_facet |
Joshi, Abhasha |
author_role |
author |
dc.contributor.none.fl_str_mv |
Pebesma, Edzer Henriques, Roberto André Pereira Appel, Marius RUN |
dc.contributor.author.fl_str_mv |
Joshi, Abhasha |
dc.subject.por.fl_str_mv |
Array Database SciDB High Performance Computing Remote Sensing Multitemporal Images |
topic |
Array Database SciDB High Performance Computing Remote Sensing Multitemporal Images |
description |
Dissertation submitted in partial fulfilment of the requirements for the degree of Master of Science in Geospatial Technologies |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-03-03 2017-03-03T00:00:00Z 2018-04-13T14:37:23Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/34462 TID:201898381 |
url |
http://hdl.handle.net/10362/34462 |
identifier_str_mv |
TID:201898381 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137926107365376 |