Lagrange multipliers and transport densities
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/1822/48041 |
Resumo: | In this paper we consider a stationary variational inequality with nonconstant gradient constraint and we prove the existence of solution of a Lagrange multiplier, assuming that the bounded open not necessarily convex set O has a smooth boundary. If the gradient constraint g is sufficiently smooth and satisfies ?g 2 =0 and the source term belongs to L 8 (O), we are able to prove that the Lagrange multiplier belongs to L q (O), for 1 < q < 8, even in a very degenerate case. Fixing q=2, the result is still true if ?g 2 is bounded from above by a positive sufficiently small constant that depends on O, q, minO??g and maxO??g. Without the restriction on the sign of ?g 2 we are still able to find a Lagrange multiplier, now belonging to L 8 (O) ' . We also prove that if we consider the variational inequality with coercivity constant d and constraint g, then the family of solutions (? d ,u d ) d > 0 of our problem has a subsequence that converges weakly to (? 0 ,u 0 ), which solves the transport equation. |
id |
RCAP_50625dd77d3c3be5cd5fe9ad166eae2c |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/48041 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Lagrange multipliers and transport densitiesElliptic quasilinear equationsLagrange multipliersNon-constant gradient constraintsScience & TechnologyIn this paper we consider a stationary variational inequality with nonconstant gradient constraint and we prove the existence of solution of a Lagrange multiplier, assuming that the bounded open not necessarily convex set O has a smooth boundary. If the gradient constraint g is sufficiently smooth and satisfies ?g 2 =0 and the source term belongs to L 8 (O), we are able to prove that the Lagrange multiplier belongs to L q (O), for 1 < q < 8, even in a very degenerate case. Fixing q=2, the result is still true if ?g 2 is bounded from above by a positive sufficiently small constant that depends on O, q, minO??g and maxO??g. Without the restriction on the sign of ?g 2 we are still able to find a Lagrange multiplier, now belonging to L 8 (O) ' . We also prove that if we consider the variational inequality with coercivity constant d and constraint g, then the family of solutions (? d ,u d ) d > 0 of our problem has a subsequence that converges weakly to (? 0 ,u 0 ), which solves the transport equation.FCTO -Fuel Cell Technologies Office(UID/MAT/00013/2013)info:eu-repo/semantics/publishedVersionElsevier MassonUniversidade do MinhoAzevedo, AssisSantos, Lisa2017-10-012017-10-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/48041eng0021-782410.1016/j.matpur.2017.05.004info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:15:49Zoai:repositorium.sdum.uminho.pt:1822/48041Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:08:20.951213Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Lagrange multipliers and transport densities |
title |
Lagrange multipliers and transport densities |
spellingShingle |
Lagrange multipliers and transport densities Azevedo, Assis Elliptic quasilinear equations Lagrange multipliers Non-constant gradient constraints Science & Technology |
title_short |
Lagrange multipliers and transport densities |
title_full |
Lagrange multipliers and transport densities |
title_fullStr |
Lagrange multipliers and transport densities |
title_full_unstemmed |
Lagrange multipliers and transport densities |
title_sort |
Lagrange multipliers and transport densities |
author |
Azevedo, Assis |
author_facet |
Azevedo, Assis Santos, Lisa |
author_role |
author |
author2 |
Santos, Lisa |
author2_role |
author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Azevedo, Assis Santos, Lisa |
dc.subject.por.fl_str_mv |
Elliptic quasilinear equations Lagrange multipliers Non-constant gradient constraints Science & Technology |
topic |
Elliptic quasilinear equations Lagrange multipliers Non-constant gradient constraints Science & Technology |
description |
In this paper we consider a stationary variational inequality with nonconstant gradient constraint and we prove the existence of solution of a Lagrange multiplier, assuming that the bounded open not necessarily convex set O has a smooth boundary. If the gradient constraint g is sufficiently smooth and satisfies ?g 2 =0 and the source term belongs to L 8 (O), we are able to prove that the Lagrange multiplier belongs to L q (O), for 1 < q < 8, even in a very degenerate case. Fixing q=2, the result is still true if ?g 2 is bounded from above by a positive sufficiently small constant that depends on O, q, minO??g and maxO??g. Without the restriction on the sign of ?g 2 we are still able to find a Lagrange multiplier, now belonging to L 8 (O) ' . We also prove that if we consider the variational inequality with coercivity constant d and constraint g, then the family of solutions (? d ,u d ) d > 0 of our problem has a subsequence that converges weakly to (? 0 ,u 0 ), which solves the transport equation. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-10-01 2017-10-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/1822/48041 |
url |
http://hdl.handle.net/1822/48041 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0021-7824 10.1016/j.matpur.2017.05.004 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Masson |
publisher.none.fl_str_mv |
Elsevier Masson |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799132505560842240 |