Statistical–dynamical modeling of the cloud-to-ground lightning activity in Portugal

Detalhes bibliográficos
Autor(a) principal: Sousa, J.F.
Data de Publicação: 2013
Outros Autores: Fragoso, Marcelo, Mendes, S., Corte-Real, J., Santos, J.A.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10451/28381
Resumo: The present study employs a dataset of cloud-to-ground discharges over Portugal, collected by the Portuguese lightning detection network in the period of 2003–2009, to identify dynamically coherent lightning regimes in Portugal and to implement a statistical–dynamical modeling of the daily discharges over the country. For this purpose, the high-resolution MERRA reanalysis is used. Three lightning regimes are then identified for Portugal: WREG, WREM and SREG. WREG is a typical cold-core cut-off low. WREM is connected to strong frontal systems driven by remote low pressure systems at higher latitudes over the North Atlantic. SREG is a combination of an inverted trough and a mid-tropospheric cold-core nearby Portugal. The statistical–dynamical modeling is based on logistic regressions (statistical component) developed for each regime separately (dynamical component). It is shown that the strength of the lightning activity (either strong or weak) for each regime is consistently modeled by a set of suitable dynamical predictors (65–70% of efficiency). The difference of the equivalent potential temperature in the 700–500 hPa layer is the best predictor for the three regimes, while the best 4-layer lifted index is still important for all regimes, but with much weaker significance. Six other predictors are more suitable for a specific regime. For the purpose of validating the modeling approach, a regional-scale climate model simulation is carried out under a very intense lightning episode.
id RCAP_5088819c8af6317530e3b90cc52c6170
oai_identifier_str oai:repositorio.ul.pt:10451/28381
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Statistical–dynamical modeling of the cloud-to-ground lightning activity in PortugalCloud-to-ground dischargeStatistical–dynamical modelingLightning regimeLogistic modelingLightning forecastingPortugalThe present study employs a dataset of cloud-to-ground discharges over Portugal, collected by the Portuguese lightning detection network in the period of 2003–2009, to identify dynamically coherent lightning regimes in Portugal and to implement a statistical–dynamical modeling of the daily discharges over the country. For this purpose, the high-resolution MERRA reanalysis is used. Three lightning regimes are then identified for Portugal: WREG, WREM and SREG. WREG is a typical cold-core cut-off low. WREM is connected to strong frontal systems driven by remote low pressure systems at higher latitudes over the North Atlantic. SREG is a combination of an inverted trough and a mid-tropospheric cold-core nearby Portugal. The statistical–dynamical modeling is based on logistic regressions (statistical component) developed for each regime separately (dynamical component). It is shown that the strength of the lightning activity (either strong or weak) for each regime is consistently modeled by a set of suitable dynamical predictors (65–70% of efficiency). The difference of the equivalent potential temperature in the 700–500 hPa layer is the best predictor for the three regimes, while the best 4-layer lifted index is still important for all regimes, but with much weaker significance. Six other predictors are more suitable for a specific regime. For the purpose of validating the modeling approach, a regional-scale climate model simulation is carried out under a very intense lightning episode.ElsevierRepositório da Universidade de LisboaSousa, J.F.Fragoso, MarceloMendes, S.Corte-Real, J.Santos, J.A.2017-07-17T14:54:53Z20132013-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10451/28381eng0169-809510.1016/j.atmosres.2013.04.010metadata only accessinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-11-20T17:36:08Zoai:repositorio.ul.pt:10451/28381Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-11-20T17:36:08Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Statistical–dynamical modeling of the cloud-to-ground lightning activity in Portugal
title Statistical–dynamical modeling of the cloud-to-ground lightning activity in Portugal
spellingShingle Statistical–dynamical modeling of the cloud-to-ground lightning activity in Portugal
Sousa, J.F.
Cloud-to-ground discharge
Statistical–dynamical modeling
Lightning regime
Logistic modeling
Lightning forecasting
Portugal
title_short Statistical–dynamical modeling of the cloud-to-ground lightning activity in Portugal
title_full Statistical–dynamical modeling of the cloud-to-ground lightning activity in Portugal
title_fullStr Statistical–dynamical modeling of the cloud-to-ground lightning activity in Portugal
title_full_unstemmed Statistical–dynamical modeling of the cloud-to-ground lightning activity in Portugal
title_sort Statistical–dynamical modeling of the cloud-to-ground lightning activity in Portugal
author Sousa, J.F.
author_facet Sousa, J.F.
Fragoso, Marcelo
Mendes, S.
Corte-Real, J.
Santos, J.A.
author_role author
author2 Fragoso, Marcelo
Mendes, S.
Corte-Real, J.
Santos, J.A.
author2_role author
author
author
author
dc.contributor.none.fl_str_mv Repositório da Universidade de Lisboa
dc.contributor.author.fl_str_mv Sousa, J.F.
Fragoso, Marcelo
Mendes, S.
Corte-Real, J.
Santos, J.A.
dc.subject.por.fl_str_mv Cloud-to-ground discharge
Statistical–dynamical modeling
Lightning regime
Logistic modeling
Lightning forecasting
Portugal
topic Cloud-to-ground discharge
Statistical–dynamical modeling
Lightning regime
Logistic modeling
Lightning forecasting
Portugal
description The present study employs a dataset of cloud-to-ground discharges over Portugal, collected by the Portuguese lightning detection network in the period of 2003–2009, to identify dynamically coherent lightning regimes in Portugal and to implement a statistical–dynamical modeling of the daily discharges over the country. For this purpose, the high-resolution MERRA reanalysis is used. Three lightning regimes are then identified for Portugal: WREG, WREM and SREG. WREG is a typical cold-core cut-off low. WREM is connected to strong frontal systems driven by remote low pressure systems at higher latitudes over the North Atlantic. SREG is a combination of an inverted trough and a mid-tropospheric cold-core nearby Portugal. The statistical–dynamical modeling is based on logistic regressions (statistical component) developed for each regime separately (dynamical component). It is shown that the strength of the lightning activity (either strong or weak) for each regime is consistently modeled by a set of suitable dynamical predictors (65–70% of efficiency). The difference of the equivalent potential temperature in the 700–500 hPa layer is the best predictor for the three regimes, while the best 4-layer lifted index is still important for all regimes, but with much weaker significance. Six other predictors are more suitable for a specific regime. For the purpose of validating the modeling approach, a regional-scale climate model simulation is carried out under a very intense lightning episode.
publishDate 2013
dc.date.none.fl_str_mv 2013
2013-01-01T00:00:00Z
2017-07-17T14:54:53Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10451/28381
url http://hdl.handle.net/10451/28381
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0169-8095
10.1016/j.atmosres.2013.04.010
dc.rights.driver.fl_str_mv metadata only access
info:eu-repo/semantics/openAccess
rights_invalid_str_mv metadata only access
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv mluisa.alvim@gmail.com
_version_ 1817548950904766464