Demand forecasting: a case study in the food industry
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | , |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/1822/70503 |
Resumo: | The use of forecasting methods is nowadays regarded as a business ally since it supports both the operational and the strategic decision-making processes. This paper is based on a research project aiming the development of demand forecasting models for a company (designated here by PR) that operates in the food business, more specifically in the delicatessen segment. In particular, we focused on demand forecasting models that can serve as a tool to support production planning and inventory management at the company. The analysis of the company’s operations led to the development of a new demand forecasting tool based on a combination of forecasts, which is now being used and tested by the company. |
id |
RCAP_508d821c930a286ac88130d328d31f80 |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/70503 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Demand forecasting: a case study in the food industryARIMACombining forecastsExponential smoothingForecasting demandScience & TechnologyThe use of forecasting methods is nowadays regarded as a business ally since it supports both the operational and the strategic decision-making processes. This paper is based on a research project aiming the development of demand forecasting models for a company (designated here by PR) that operates in the food business, more specifically in the delicatessen segment. In particular, we focused on demand forecasting models that can serve as a tool to support production planning and inventory management at the company. The analysis of the company’s operations led to the development of a new demand forecasting tool based on a combination of forecasts, which is now being used and tested by the company.This work has been supported by FCT – Fundação para a Ciência e Tecnologia within the Project Scope: UID/CEC/00319/2019Springer VerlagUniversidade do MinhoSilva, Juliana C.Figueiredo, ManuelBraga, A. C.20192019-01-01T00:00:00Zconference paperinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/1822/70503engSilva J.C., Figueiredo M.C., Braga A.C. (2019) Demand Forecasting: A Case Study in the Food Industry. In: Misra S. et al. (eds) Computational Science and Its Applications – ICCSA 2019. ICCSA 2019. Lecture Notes in Computer Science, vol 11621. Springer, Cham. https://doi.org/10.1007/978-3-030-24302-9_597830302430120302-974310.1007/978-3-030-24302-9_5https://link.springer.com/chapter/10.1007%2F978-3-030-24302-9_5info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-05-11T06:03:10Zoai:repositorium.sdum.uminho.pt:1822/70503Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-05-11T06:03:10Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Demand forecasting: a case study in the food industry |
title |
Demand forecasting: a case study in the food industry |
spellingShingle |
Demand forecasting: a case study in the food industry Silva, Juliana C. ARIMA Combining forecasts Exponential smoothing Forecasting demand Science & Technology |
title_short |
Demand forecasting: a case study in the food industry |
title_full |
Demand forecasting: a case study in the food industry |
title_fullStr |
Demand forecasting: a case study in the food industry |
title_full_unstemmed |
Demand forecasting: a case study in the food industry |
title_sort |
Demand forecasting: a case study in the food industry |
author |
Silva, Juliana C. |
author_facet |
Silva, Juliana C. Figueiredo, Manuel Braga, A. C. |
author_role |
author |
author2 |
Figueiredo, Manuel Braga, A. C. |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Silva, Juliana C. Figueiredo, Manuel Braga, A. C. |
dc.subject.por.fl_str_mv |
ARIMA Combining forecasts Exponential smoothing Forecasting demand Science & Technology |
topic |
ARIMA Combining forecasts Exponential smoothing Forecasting demand Science & Technology |
description |
The use of forecasting methods is nowadays regarded as a business ally since it supports both the operational and the strategic decision-making processes. This paper is based on a research project aiming the development of demand forecasting models for a company (designated here by PR) that operates in the food business, more specifically in the delicatessen segment. In particular, we focused on demand forecasting models that can serve as a tool to support production planning and inventory management at the company. The analysis of the company’s operations led to the development of a new demand forecasting tool based on a combination of forecasts, which is now being used and tested by the company. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019 2019-01-01T00:00:00Z |
dc.type.driver.fl_str_mv |
conference paper |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/1822/70503 |
url |
http://hdl.handle.net/1822/70503 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Silva J.C., Figueiredo M.C., Braga A.C. (2019) Demand Forecasting: A Case Study in the Food Industry. In: Misra S. et al. (eds) Computational Science and Its Applications – ICCSA 2019. ICCSA 2019. Lecture Notes in Computer Science, vol 11621. Springer, Cham. https://doi.org/10.1007/978-3-030-24302-9_5 9783030243012 0302-9743 10.1007/978-3-030-24302-9_5 https://link.springer.com/chapter/10.1007%2F978-3-030-24302-9_5 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Springer Verlag |
publisher.none.fl_str_mv |
Springer Verlag |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
mluisa.alvim@gmail.com |
_version_ |
1817544834998599680 |