IPCAPS: An R package for iterative pruning to capture population structure

Detalhes bibliográficos
Autor(a) principal: Chaichoompu, K
Data de Publicação: 2019
Outros Autores: Abegaz, F, Tongsima, S, Shaw, P, Sakuntabhai, A, Pereira, L, Van, Steen, K
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: https://hdl.handle.net/10216/136308
Resumo: Background: Resolving population genetic structure is challenging, especially when dealing with closely related or geographically confined populations. Although Principal Component Analysis (PCA)-based methods and genomic variation with single nucleotide polymorphisms (SNPs) are widely used to describe shared genetic ancestry, improvements can be made especially when fine-scale population structure is the target. Results: This work presents an R package called IPCAPS, which uses SNP information for resolving possibly fine-scale population structure. The IPCAPS routines are built on the iterative pruning Principal Component Analysis (ipPCA) framework that systematically assigns individuals to genetically similar subgroups. In each iteration, our tool is able to detect and eliminate outliers, hereby avoiding severe misclassification errors. Conclusions: IPCAPS supports different measurement scales for variables used to identify substructure. Hence, panels of gene expression and methylation data can be accommodated as well. The tool can also be applied in patient sub-phenotyping contexts. IPCAPS is developed in R and is freely available from http://bio3.giga.ulg.ac.be/ipcaps.
id RCAP_50f7d248876448b48955dd589b8ae4f9
oai_identifier_str oai:repositorio-aberto.up.pt:10216/136308
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling IPCAPS: An R package for iterative pruning to capture population structureFine-scale structureIterative pruningOutlier detectionPopulation clusteringPopulation geneticsBackground: Resolving population genetic structure is challenging, especially when dealing with closely related or geographically confined populations. Although Principal Component Analysis (PCA)-based methods and genomic variation with single nucleotide polymorphisms (SNPs) are widely used to describe shared genetic ancestry, improvements can be made especially when fine-scale population structure is the target. Results: This work presents an R package called IPCAPS, which uses SNP information for resolving possibly fine-scale population structure. The IPCAPS routines are built on the iterative pruning Principal Component Analysis (ipPCA) framework that systematically assigns individuals to genetically similar subgroups. In each iteration, our tool is able to detect and eliminate outliers, hereby avoiding severe misclassification errors. Conclusions: IPCAPS supports different measurement scales for variables used to identify substructure. Hence, panels of gene expression and methylation data can be accommodated as well. The tool can also be applied in patient sub-phenotyping contexts. IPCAPS is developed in R and is freely available from http://bio3.giga.ulg.ac.be/ipcaps.BioMed Central20192019-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/10216/136308eng1751-047310.1186/s13029-019-0072-6Chaichoompu, KAbegaz, FTongsima, SShaw, PSakuntabhai, APereira, LVan, Steen, Kinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-09-27T07:02:15Zoai:repositorio-aberto.up.pt:10216/136308Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-09-27T07:02:15Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv IPCAPS: An R package for iterative pruning to capture population structure
title IPCAPS: An R package for iterative pruning to capture population structure
spellingShingle IPCAPS: An R package for iterative pruning to capture population structure
Chaichoompu, K
Fine-scale structure
Iterative pruning
Outlier detection
Population clustering
Population genetics
title_short IPCAPS: An R package for iterative pruning to capture population structure
title_full IPCAPS: An R package for iterative pruning to capture population structure
title_fullStr IPCAPS: An R package for iterative pruning to capture population structure
title_full_unstemmed IPCAPS: An R package for iterative pruning to capture population structure
title_sort IPCAPS: An R package for iterative pruning to capture population structure
author Chaichoompu, K
author_facet Chaichoompu, K
Abegaz, F
Tongsima, S
Shaw, P
Sakuntabhai, A
Pereira, L
Van, Steen, K
author_role author
author2 Abegaz, F
Tongsima, S
Shaw, P
Sakuntabhai, A
Pereira, L
Van, Steen, K
author2_role author
author
author
author
author
author
dc.contributor.author.fl_str_mv Chaichoompu, K
Abegaz, F
Tongsima, S
Shaw, P
Sakuntabhai, A
Pereira, L
Van, Steen, K
dc.subject.por.fl_str_mv Fine-scale structure
Iterative pruning
Outlier detection
Population clustering
Population genetics
topic Fine-scale structure
Iterative pruning
Outlier detection
Population clustering
Population genetics
description Background: Resolving population genetic structure is challenging, especially when dealing with closely related or geographically confined populations. Although Principal Component Analysis (PCA)-based methods and genomic variation with single nucleotide polymorphisms (SNPs) are widely used to describe shared genetic ancestry, improvements can be made especially when fine-scale population structure is the target. Results: This work presents an R package called IPCAPS, which uses SNP information for resolving possibly fine-scale population structure. The IPCAPS routines are built on the iterative pruning Principal Component Analysis (ipPCA) framework that systematically assigns individuals to genetically similar subgroups. In each iteration, our tool is able to detect and eliminate outliers, hereby avoiding severe misclassification errors. Conclusions: IPCAPS supports different measurement scales for variables used to identify substructure. Hence, panels of gene expression and methylation data can be accommodated as well. The tool can also be applied in patient sub-phenotyping contexts. IPCAPS is developed in R and is freely available from http://bio3.giga.ulg.ac.be/ipcaps.
publishDate 2019
dc.date.none.fl_str_mv 2019
2019-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/10216/136308
url https://hdl.handle.net/10216/136308
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 1751-0473
10.1186/s13029-019-0072-6
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv BioMed Central
publisher.none.fl_str_mv BioMed Central
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv mluisa.alvim@gmail.com
_version_ 1817547443432062976