The 123 theorem of Probability Theory and Copositive Matrices
Autor(a) principal: | |
---|---|
Data de Publicação: | 2014 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10316/102687 https://doi.org/10.2478/spma-2014-0016 |
Resumo: | Alon and Yuster give for independent identically distributed real or vector valued random variables X, Y combinatorially proved estimates of the form Prob(‖X − Y‖ b) c Prob(‖X − Y‖ a). We derive these using copositive matrices instead. By the same method we also give estimates for the real valued case, involving X + Y and X − Y, due to Siegmund-Schultze and von Weizsäcker as generalized by Dong, Li and Li. Furthermore, we formulate a version of the above inequalities as an integral inequality for monotone functions. |
id |
RCAP_51013324bdf639e0895937bd0285c0f8 |
---|---|
oai_identifier_str |
oai:estudogeral.uc.pt:10316/102687 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
The 123 theorem of Probability Theory and Copositive Matricesprobabilistic inequalitiescopositivityintegral inequalityAlon and Yuster give for independent identically distributed real or vector valued random variables X, Y combinatorially proved estimates of the form Prob(‖X − Y‖ b) c Prob(‖X − Y‖ a). We derive these using copositive matrices instead. By the same method we also give estimates for the real valued case, involving X + Y and X − Y, due to Siegmund-Schultze and von Weizsäcker as generalized by Dong, Li and Li. Furthermore, we formulate a version of the above inequalities as an integral inequality for monotone functions.2014info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10316/102687http://hdl.handle.net/10316/102687https://doi.org/10.2478/spma-2014-0016eng2300-7451Kovacec, AlexanderMoreira, Miguel M. R.Martins, David P.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2022-10-06T20:31:41Zoai:estudogeral.uc.pt:10316/102687Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T21:19:37.586881Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
The 123 theorem of Probability Theory and Copositive Matrices |
title |
The 123 theorem of Probability Theory and Copositive Matrices |
spellingShingle |
The 123 theorem of Probability Theory and Copositive Matrices Kovacec, Alexander probabilistic inequalities copositivity integral inequality |
title_short |
The 123 theorem of Probability Theory and Copositive Matrices |
title_full |
The 123 theorem of Probability Theory and Copositive Matrices |
title_fullStr |
The 123 theorem of Probability Theory and Copositive Matrices |
title_full_unstemmed |
The 123 theorem of Probability Theory and Copositive Matrices |
title_sort |
The 123 theorem of Probability Theory and Copositive Matrices |
author |
Kovacec, Alexander |
author_facet |
Kovacec, Alexander Moreira, Miguel M. R. Martins, David P. |
author_role |
author |
author2 |
Moreira, Miguel M. R. Martins, David P. |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Kovacec, Alexander Moreira, Miguel M. R. Martins, David P. |
dc.subject.por.fl_str_mv |
probabilistic inequalities copositivity integral inequality |
topic |
probabilistic inequalities copositivity integral inequality |
description |
Alon and Yuster give for independent identically distributed real or vector valued random variables X, Y combinatorially proved estimates of the form Prob(‖X − Y‖ b) c Prob(‖X − Y‖ a). We derive these using copositive matrices instead. By the same method we also give estimates for the real valued case, involving X + Y and X − Y, due to Siegmund-Schultze and von Weizsäcker as generalized by Dong, Li and Li. Furthermore, we formulate a version of the above inequalities as an integral inequality for monotone functions. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10316/102687 http://hdl.handle.net/10316/102687 https://doi.org/10.2478/spma-2014-0016 |
url |
http://hdl.handle.net/10316/102687 https://doi.org/10.2478/spma-2014-0016 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2300-7451 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799134090077667328 |