Quantifying and addressing the prevalence and bias of study designs in the environmental and social sciences

Detalhes bibliográficos
Autor(a) principal: Christie, Alec P.
Data de Publicação: 2020
Outros Autores: Abecasis, David, Adjeroud, Mehdi, Alonso, Juan C., Amano, Tatsuya, Anton, Alvaro, Baldigo, Barry P., Barrientos, Rafael, Bicknell, Jake E., Buhl, Deborah A., Cebrian, Just, Ceia, Ricardo S., Cibils-Martina, Luciana, Clarke, Sarah, Claudet, Joachim, Craig, Michael D., Davoult, Dominique, De Backer, Annelies, Donovan, Mary K., Eddy, Tyler D., França, Filipe M., Gardner, Jonathan P. A., Harris, Bradley P., Huusko, Ari, Jones, Ian L., Kelaher, Brendan P., Kotiaho, Janne S., López-Baucells, Adrià, Major, Heather L., Mäki-Petäys, Aki, Martín, Beatriz, Martín, Carlos A., Martin, Philip A., Mateos-Molina, Daniel, McConnaughey, Robert A., Meroni, Michele, Meyer, Christoph F. J., Mills, Kade, Montefalcone, Monica, Noreika, Norbertas, Palacín, Carlos, Pande, Anjali, Pitcher, C. Roland, Ponce, Carlos, Rinella, Matt, Rocha, Ricardo, Ruiz-Delgado, María C., Schmitter-Soto, Juan J., Shaffer, Jill A., Sharma, Shailesh, Sher, Anna A., Stagnol, Doriane, Stanley, Thomas R., Stokesbury, Kevin D. E., Torres, Aurora, Tully, Oliver, Vehanen, Teppo, Watts, Corinne, Zhao, Qingyuan, Sutherland, William J.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10451/46498
Resumo: Building trust in science and evidence-based decision-making depends heavily on the credibility of studies and their findings. Researchers employ many different study designs that vary in their risk of bias to evaluate the true effect of interventions or impacts. Here, we empirically quantify, on a large scale, the prevalence of different study designs and the magnitude of bias in their estimates. Randomised designs and controlled observational designs with pre-intervention sampling were used by just 23% of intervention studies in biodiversity conservation, and 36% of intervention studies in social science. We demonstrate, through pairwise within-study comparisons across 49 environmental datasets, that these types of designs usually give less biased estimates than simpler observational designs. We propose a model-based approach to combine study estimates that may suffer from different levels of study design bias, discuss the implications for evidence synthesis, and how to facilitate the use of more credible study designs.
id RCAP_5114f28f0f7b11b7de6f4c422f552bd5
oai_identifier_str oai:repositorio.ul.pt:10451/46498
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Quantifying and addressing the prevalence and bias of study designs in the environmental and social sciencesBiasBiodiversityEcologyEnvironmentHumansLiteraturePrevalenceResearch DesignSocial SciencesBuilding trust in science and evidence-based decision-making depends heavily on the credibility of studies and their findings. Researchers employ many different study designs that vary in their risk of bias to evaluate the true effect of interventions or impacts. Here, we empirically quantify, on a large scale, the prevalence of different study designs and the magnitude of bias in their estimates. Randomised designs and controlled observational designs with pre-intervention sampling were used by just 23% of intervention studies in biodiversity conservation, and 36% of intervention studies in social science. We demonstrate, through pairwise within-study comparisons across 49 environmental datasets, that these types of designs usually give less biased estimates than simpler observational designs. We propose a model-based approach to combine study estimates that may suffer from different levels of study design bias, discuss the implications for evidence synthesis, and how to facilitate the use of more credible study designs.NatureRepositório da Universidade de LisboaChristie, Alec P.Abecasis, DavidAdjeroud, MehdiAlonso, Juan C.Amano, TatsuyaAnton, AlvaroBaldigo, Barry P.Barrientos, RafaelBicknell, Jake E.Buhl, Deborah A.Cebrian, JustCeia, Ricardo S.Cibils-Martina, LucianaClarke, SarahClaudet, JoachimCraig, Michael D.Davoult, DominiqueDe Backer, AnneliesDonovan, Mary K.Eddy, Tyler D.França, Filipe M.Gardner, Jonathan P. A.Harris, Bradley P.Huusko, AriJones, Ian L.Kelaher, Brendan P.Kotiaho, Janne S.López-Baucells, AdriàMajor, Heather L.Mäki-Petäys, AkiMartín, BeatrizMartín, Carlos A.Martin, Philip A.Mateos-Molina, DanielMcConnaughey, Robert A.Meroni, MicheleMeyer, Christoph F. J.Mills, KadeMontefalcone, MonicaNoreika, NorbertasPalacín, CarlosPande, AnjaliPitcher, C. RolandPonce, CarlosRinella, MattRocha, RicardoRuiz-Delgado, María C.Schmitter-Soto, Juan J.Shaffer, Jill A.Sharma, ShaileshSher, Anna A.Stagnol, DorianeStanley, Thomas R.Stokesbury, Kevin D. E.Torres, AuroraTully, OliverVehanen, TeppoWatts, CorinneZhao, QingyuanSutherland, William J.2021-02-23T20:17:41Z2020-12-112020-12-11T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10451/46498engChristie, A.P., Abecasis, D., Adjeroud, M. et al. Quantifying and addressing the prevalence and bias of study designs in the environmental and social sciences. Nat Commun 11, 6377 (2020). https://doi.org/10.1038/s41467-020-20142-y10.1038/s41467-020-20142-yinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-08T16:48:51Zoai:repositorio.ul.pt:10451/46498Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T21:58:40.482973Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Quantifying and addressing the prevalence and bias of study designs in the environmental and social sciences
title Quantifying and addressing the prevalence and bias of study designs in the environmental and social sciences
spellingShingle Quantifying and addressing the prevalence and bias of study designs in the environmental and social sciences
Christie, Alec P.
Bias
Biodiversity
Ecology
Environment
Humans
Literature
Prevalence
Research Design
Social Sciences
title_short Quantifying and addressing the prevalence and bias of study designs in the environmental and social sciences
title_full Quantifying and addressing the prevalence and bias of study designs in the environmental and social sciences
title_fullStr Quantifying and addressing the prevalence and bias of study designs in the environmental and social sciences
title_full_unstemmed Quantifying and addressing the prevalence and bias of study designs in the environmental and social sciences
title_sort Quantifying and addressing the prevalence and bias of study designs in the environmental and social sciences
author Christie, Alec P.
author_facet Christie, Alec P.
Abecasis, David
Adjeroud, Mehdi
Alonso, Juan C.
Amano, Tatsuya
Anton, Alvaro
Baldigo, Barry P.
Barrientos, Rafael
Bicknell, Jake E.
Buhl, Deborah A.
Cebrian, Just
Ceia, Ricardo S.
Cibils-Martina, Luciana
Clarke, Sarah
Claudet, Joachim
Craig, Michael D.
Davoult, Dominique
De Backer, Annelies
Donovan, Mary K.
Eddy, Tyler D.
França, Filipe M.
Gardner, Jonathan P. A.
Harris, Bradley P.
Huusko, Ari
Jones, Ian L.
Kelaher, Brendan P.
Kotiaho, Janne S.
López-Baucells, Adrià
Major, Heather L.
Mäki-Petäys, Aki
Martín, Beatriz
Martín, Carlos A.
Martin, Philip A.
Mateos-Molina, Daniel
McConnaughey, Robert A.
Meroni, Michele
Meyer, Christoph F. J.
Mills, Kade
Montefalcone, Monica
Noreika, Norbertas
Palacín, Carlos
Pande, Anjali
Pitcher, C. Roland
Ponce, Carlos
Rinella, Matt
Rocha, Ricardo
Ruiz-Delgado, María C.
Schmitter-Soto, Juan J.
Shaffer, Jill A.
Sharma, Shailesh
Sher, Anna A.
Stagnol, Doriane
Stanley, Thomas R.
Stokesbury, Kevin D. E.
Torres, Aurora
Tully, Oliver
Vehanen, Teppo
Watts, Corinne
Zhao, Qingyuan
Sutherland, William J.
author_role author
author2 Abecasis, David
Adjeroud, Mehdi
Alonso, Juan C.
Amano, Tatsuya
Anton, Alvaro
Baldigo, Barry P.
Barrientos, Rafael
Bicknell, Jake E.
Buhl, Deborah A.
Cebrian, Just
Ceia, Ricardo S.
Cibils-Martina, Luciana
Clarke, Sarah
Claudet, Joachim
Craig, Michael D.
Davoult, Dominique
De Backer, Annelies
Donovan, Mary K.
Eddy, Tyler D.
França, Filipe M.
Gardner, Jonathan P. A.
Harris, Bradley P.
Huusko, Ari
Jones, Ian L.
Kelaher, Brendan P.
Kotiaho, Janne S.
López-Baucells, Adrià
Major, Heather L.
Mäki-Petäys, Aki
Martín, Beatriz
Martín, Carlos A.
Martin, Philip A.
Mateos-Molina, Daniel
McConnaughey, Robert A.
Meroni, Michele
Meyer, Christoph F. J.
Mills, Kade
Montefalcone, Monica
Noreika, Norbertas
Palacín, Carlos
Pande, Anjali
Pitcher, C. Roland
Ponce, Carlos
Rinella, Matt
Rocha, Ricardo
Ruiz-Delgado, María C.
Schmitter-Soto, Juan J.
Shaffer, Jill A.
Sharma, Shailesh
Sher, Anna A.
Stagnol, Doriane
Stanley, Thomas R.
Stokesbury, Kevin D. E.
Torres, Aurora
Tully, Oliver
Vehanen, Teppo
Watts, Corinne
Zhao, Qingyuan
Sutherland, William J.
author2_role author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv Repositório da Universidade de Lisboa
dc.contributor.author.fl_str_mv Christie, Alec P.
Abecasis, David
Adjeroud, Mehdi
Alonso, Juan C.
Amano, Tatsuya
Anton, Alvaro
Baldigo, Barry P.
Barrientos, Rafael
Bicknell, Jake E.
Buhl, Deborah A.
Cebrian, Just
Ceia, Ricardo S.
Cibils-Martina, Luciana
Clarke, Sarah
Claudet, Joachim
Craig, Michael D.
Davoult, Dominique
De Backer, Annelies
Donovan, Mary K.
Eddy, Tyler D.
França, Filipe M.
Gardner, Jonathan P. A.
Harris, Bradley P.
Huusko, Ari
Jones, Ian L.
Kelaher, Brendan P.
Kotiaho, Janne S.
López-Baucells, Adrià
Major, Heather L.
Mäki-Petäys, Aki
Martín, Beatriz
Martín, Carlos A.
Martin, Philip A.
Mateos-Molina, Daniel
McConnaughey, Robert A.
Meroni, Michele
Meyer, Christoph F. J.
Mills, Kade
Montefalcone, Monica
Noreika, Norbertas
Palacín, Carlos
Pande, Anjali
Pitcher, C. Roland
Ponce, Carlos
Rinella, Matt
Rocha, Ricardo
Ruiz-Delgado, María C.
Schmitter-Soto, Juan J.
Shaffer, Jill A.
Sharma, Shailesh
Sher, Anna A.
Stagnol, Doriane
Stanley, Thomas R.
Stokesbury, Kevin D. E.
Torres, Aurora
Tully, Oliver
Vehanen, Teppo
Watts, Corinne
Zhao, Qingyuan
Sutherland, William J.
dc.subject.por.fl_str_mv Bias
Biodiversity
Ecology
Environment
Humans
Literature
Prevalence
Research Design
Social Sciences
topic Bias
Biodiversity
Ecology
Environment
Humans
Literature
Prevalence
Research Design
Social Sciences
description Building trust in science and evidence-based decision-making depends heavily on the credibility of studies and their findings. Researchers employ many different study designs that vary in their risk of bias to evaluate the true effect of interventions or impacts. Here, we empirically quantify, on a large scale, the prevalence of different study designs and the magnitude of bias in their estimates. Randomised designs and controlled observational designs with pre-intervention sampling were used by just 23% of intervention studies in biodiversity conservation, and 36% of intervention studies in social science. We demonstrate, through pairwise within-study comparisons across 49 environmental datasets, that these types of designs usually give less biased estimates than simpler observational designs. We propose a model-based approach to combine study estimates that may suffer from different levels of study design bias, discuss the implications for evidence synthesis, and how to facilitate the use of more credible study designs.
publishDate 2020
dc.date.none.fl_str_mv 2020-12-11
2020-12-11T00:00:00Z
2021-02-23T20:17:41Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10451/46498
url http://hdl.handle.net/10451/46498
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Christie, A.P., Abecasis, D., Adjeroud, M. et al. Quantifying and addressing the prevalence and bias of study designs in the environmental and social sciences. Nat Commun 11, 6377 (2020). https://doi.org/10.1038/s41467-020-20142-y
10.1038/s41467-020-20142-y
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Nature
publisher.none.fl_str_mv Nature
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799134532551573504