Geometric Hamiltonian Formulation of a Variational Problem Depending on the Covariant Acceleration

Detalhes bibliográficos
Autor(a) principal: Abrunheiro, Lígia
Data de Publicação: 2013
Outros Autores: Camarinha, Margarida, Clemente-Gallardo, Jesús
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10316/44982
https://doi.org/10.1155/2013/243621
Resumo: In this work we consider a second order variational problem depending on the covariant acceleration, which is related with the notion of Riemannian cubic polynomials. This problem and the corresponding optimal control problem are described in the context of higher order tangent bundles using geometric tools. The main tool, a presymplectic variant of the Pontryagin's maximum principle, allows us to study the dynamics of the control problem.
id RCAP_516c48087759c98a96b7fde6dc465e55
oai_identifier_str oai:estudogeral.uc.pt:10316/44982
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Geometric Hamiltonian Formulation of a Variational Problem Depending on the Covariant AccelerationIn this work we consider a second order variational problem depending on the covariant acceleration, which is related with the notion of Riemannian cubic polynomials. This problem and the corresponding optimal control problem are described in the context of higher order tangent bundles using geometric tools. The main tool, a presymplectic variant of the Pontryagin's maximum principle, allows us to study the dynamics of the control problem.Hindawi Publishing Corporation2013info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10316/44982http://hdl.handle.net/10316/44982https://doi.org/10.1155/2013/243621enghttps://www.hindawi.com/journals/cpis/2013/243621/Abrunheiro, LígiaCamarinha, MargaridaClemente-Gallardo, Jesúsinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2021-06-29T10:03:20Zoai:estudogeral.uc.pt:10316/44982Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:53:32.396163Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Geometric Hamiltonian Formulation of a Variational Problem Depending on the Covariant Acceleration
title Geometric Hamiltonian Formulation of a Variational Problem Depending on the Covariant Acceleration
spellingShingle Geometric Hamiltonian Formulation of a Variational Problem Depending on the Covariant Acceleration
Abrunheiro, Lígia
title_short Geometric Hamiltonian Formulation of a Variational Problem Depending on the Covariant Acceleration
title_full Geometric Hamiltonian Formulation of a Variational Problem Depending on the Covariant Acceleration
title_fullStr Geometric Hamiltonian Formulation of a Variational Problem Depending on the Covariant Acceleration
title_full_unstemmed Geometric Hamiltonian Formulation of a Variational Problem Depending on the Covariant Acceleration
title_sort Geometric Hamiltonian Formulation of a Variational Problem Depending on the Covariant Acceleration
author Abrunheiro, Lígia
author_facet Abrunheiro, Lígia
Camarinha, Margarida
Clemente-Gallardo, Jesús
author_role author
author2 Camarinha, Margarida
Clemente-Gallardo, Jesús
author2_role author
author
dc.contributor.author.fl_str_mv Abrunheiro, Lígia
Camarinha, Margarida
Clemente-Gallardo, Jesús
description In this work we consider a second order variational problem depending on the covariant acceleration, which is related with the notion of Riemannian cubic polynomials. This problem and the corresponding optimal control problem are described in the context of higher order tangent bundles using geometric tools. The main tool, a presymplectic variant of the Pontryagin's maximum principle, allows us to study the dynamics of the control problem.
publishDate 2013
dc.date.none.fl_str_mv 2013
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10316/44982
http://hdl.handle.net/10316/44982
https://doi.org/10.1155/2013/243621
url http://hdl.handle.net/10316/44982
https://doi.org/10.1155/2013/243621
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://www.hindawi.com/journals/cpis/2013/243621/
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Hindawi Publishing Corporation
publisher.none.fl_str_mv Hindawi Publishing Corporation
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799133822274502656