Evolutionary strategies in swarm robotics controllers

Detalhes bibliográficos
Autor(a) principal: Rodrigues, Alexandre Valério
Data de Publicação: 2022
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10071/27539
Resumo: Nowadays, Unmanned Vehicles (UV) are widespread around the world. Most of these vehicles require a great level of human control, and mission success is reliant on this dependency. Therefore, it is important to use machine learning techniques that will train the robotic controllers to automate the control, making the process more efficient. Evolutionary strategies may be the key to having robust and adaptive learning in robotic systems. Many studies involving UV systems and evolutionary strategies have been conducted in the last years, however, there are still research gaps that need to be addressed, such as the reality gap. The reality gap occurs when controllers trained in simulated environments fail to be transferred to real robots. This work proposes an approach for solving robotic tasks using realistic simulation and using evolutionary strategies to train controllers. The chosen setup is easily scalable for multirobot systems or swarm robots. In this thesis, the simulation architecture and setup are presented, including the drone simulation model and software. The drone model chosen for the simulations is available in the real world and widely used, such as the software and flight control unit. This relevant factor makes the transition to reality smoother and easier. Controllers using behavior trees were evolved using a developed evolutionary algorithm, and several experiments were conducted. Results demonstrated that it is possible to evolve a robotic controller in realistic simulation environments, using a simulated drone model that exists in the real world, and also the same flight control unit and operating system that is generally used in real world experiments.
id RCAP_51cff4e6dfbb986ae58a378027669466
oai_identifier_str oai:repositorio.iscte-iul.pt:10071/27539
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Evolutionary strategies in swarm robotics controllersEvolutionary algorithmsUnmanned vehiclesRealistic simulationsBehavior tree controllersAlgoritmos evolucionáriosVeículos não tripuladosSimulações realistasControladores com behavior treesNowadays, Unmanned Vehicles (UV) are widespread around the world. Most of these vehicles require a great level of human control, and mission success is reliant on this dependency. Therefore, it is important to use machine learning techniques that will train the robotic controllers to automate the control, making the process more efficient. Evolutionary strategies may be the key to having robust and adaptive learning in robotic systems. Many studies involving UV systems and evolutionary strategies have been conducted in the last years, however, there are still research gaps that need to be addressed, such as the reality gap. The reality gap occurs when controllers trained in simulated environments fail to be transferred to real robots. This work proposes an approach for solving robotic tasks using realistic simulation and using evolutionary strategies to train controllers. The chosen setup is easily scalable for multirobot systems or swarm robots. In this thesis, the simulation architecture and setup are presented, including the drone simulation model and software. The drone model chosen for the simulations is available in the real world and widely used, such as the software and flight control unit. This relevant factor makes the transition to reality smoother and easier. Controllers using behavior trees were evolved using a developed evolutionary algorithm, and several experiments were conducted. Results demonstrated that it is possible to evolve a robotic controller in realistic simulation environments, using a simulated drone model that exists in the real world, and also the same flight control unit and operating system that is generally used in real world experiments.Atualmente os Veículos Não Tripulados (VNT) encontram-se difundidos por todo o Mundo. A maioria destes veículos requerem um elevado controlo humano, e o sucesso das missões está diretamente dependente deste fator. Assim, é importante utilizar técnicas de aprendizagem automática que irão treinar os controladores dos VNT, de modo a automatizar o controlo, tornando o processo mais eficiente. As estratégias evolutivas podem ser a chave para uma aprendizagem robusta e adaptativa em sistemas robóticos. Vários estudos têm sido realizados nos últimos anos, contudo, existem lacunas que precisam de ser abordadas, tais como o reality gap. Este facto ocorre quando os controladores treinados em ambientes simulados falham ao serem transferidos para VNT reais. Este trabalho propõe uma abordagem para a resolução de missões com VNT, utilizando um simulador realista e estratégias evolutivas para treinar controladores. A arquitetura escolhida é facilmente escalável para sistemas com múltiplos VNT. Nesta tese, é apresentada a arquitetura e configuração do ambiente de simulação, incluindo o modelo e software de simulação do VNT. O modelo de VNT escolhido para as simulações é um modelo real e amplamente utilizado, assim como o software e a unidade de controlo de voo. Este fator é relevante e torna a transição para a realidade mais suave. É desenvolvido um algoritmo evolucionário para treinar um controlador, que utiliza behavior trees, e realizados diversos testes. Os resultados demonstram que é possível evoluir um controlador em ambientes de simulação realistas, utilizando um VNT simulado mas real, assim como utilizando as mesmas unidades de controlo de voo e software que são amplamente utilizados em ambiente real.2023-01-27T12:12:35Z2022-12-20T00:00:00Z2022-12-202022-11info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10071/27539TID:203175956engRodrigues, Alexandre Valérioinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-09T17:32:10Zoai:repositorio.iscte-iul.pt:10071/27539Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T22:14:29.858359Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Evolutionary strategies in swarm robotics controllers
title Evolutionary strategies in swarm robotics controllers
spellingShingle Evolutionary strategies in swarm robotics controllers
Rodrigues, Alexandre Valério
Evolutionary algorithms
Unmanned vehicles
Realistic simulations
Behavior tree controllers
Algoritmos evolucionários
Veículos não tripulados
Simulações realistas
Controladores com behavior trees
title_short Evolutionary strategies in swarm robotics controllers
title_full Evolutionary strategies in swarm robotics controllers
title_fullStr Evolutionary strategies in swarm robotics controllers
title_full_unstemmed Evolutionary strategies in swarm robotics controllers
title_sort Evolutionary strategies in swarm robotics controllers
author Rodrigues, Alexandre Valério
author_facet Rodrigues, Alexandre Valério
author_role author
dc.contributor.author.fl_str_mv Rodrigues, Alexandre Valério
dc.subject.por.fl_str_mv Evolutionary algorithms
Unmanned vehicles
Realistic simulations
Behavior tree controllers
Algoritmos evolucionários
Veículos não tripulados
Simulações realistas
Controladores com behavior trees
topic Evolutionary algorithms
Unmanned vehicles
Realistic simulations
Behavior tree controllers
Algoritmos evolucionários
Veículos não tripulados
Simulações realistas
Controladores com behavior trees
description Nowadays, Unmanned Vehicles (UV) are widespread around the world. Most of these vehicles require a great level of human control, and mission success is reliant on this dependency. Therefore, it is important to use machine learning techniques that will train the robotic controllers to automate the control, making the process more efficient. Evolutionary strategies may be the key to having robust and adaptive learning in robotic systems. Many studies involving UV systems and evolutionary strategies have been conducted in the last years, however, there are still research gaps that need to be addressed, such as the reality gap. The reality gap occurs when controllers trained in simulated environments fail to be transferred to real robots. This work proposes an approach for solving robotic tasks using realistic simulation and using evolutionary strategies to train controllers. The chosen setup is easily scalable for multirobot systems or swarm robots. In this thesis, the simulation architecture and setup are presented, including the drone simulation model and software. The drone model chosen for the simulations is available in the real world and widely used, such as the software and flight control unit. This relevant factor makes the transition to reality smoother and easier. Controllers using behavior trees were evolved using a developed evolutionary algorithm, and several experiments were conducted. Results demonstrated that it is possible to evolve a robotic controller in realistic simulation environments, using a simulated drone model that exists in the real world, and also the same flight control unit and operating system that is generally used in real world experiments.
publishDate 2022
dc.date.none.fl_str_mv 2022-12-20T00:00:00Z
2022-12-20
2022-11
2023-01-27T12:12:35Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10071/27539
TID:203175956
url http://hdl.handle.net/10071/27539
identifier_str_mv TID:203175956
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799134701954269184