Evolutionary strategies in swarm robotics controllers
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10071/27539 |
Resumo: | Nowadays, Unmanned Vehicles (UV) are widespread around the world. Most of these vehicles require a great level of human control, and mission success is reliant on this dependency. Therefore, it is important to use machine learning techniques that will train the robotic controllers to automate the control, making the process more efficient. Evolutionary strategies may be the key to having robust and adaptive learning in robotic systems. Many studies involving UV systems and evolutionary strategies have been conducted in the last years, however, there are still research gaps that need to be addressed, such as the reality gap. The reality gap occurs when controllers trained in simulated environments fail to be transferred to real robots. This work proposes an approach for solving robotic tasks using realistic simulation and using evolutionary strategies to train controllers. The chosen setup is easily scalable for multirobot systems or swarm robots. In this thesis, the simulation architecture and setup are presented, including the drone simulation model and software. The drone model chosen for the simulations is available in the real world and widely used, such as the software and flight control unit. This relevant factor makes the transition to reality smoother and easier. Controllers using behavior trees were evolved using a developed evolutionary algorithm, and several experiments were conducted. Results demonstrated that it is possible to evolve a robotic controller in realistic simulation environments, using a simulated drone model that exists in the real world, and also the same flight control unit and operating system that is generally used in real world experiments. |
id |
RCAP_51cff4e6dfbb986ae58a378027669466 |
---|---|
oai_identifier_str |
oai:repositorio.iscte-iul.pt:10071/27539 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Evolutionary strategies in swarm robotics controllersEvolutionary algorithmsUnmanned vehiclesRealistic simulationsBehavior tree controllersAlgoritmos evolucionáriosVeículos não tripuladosSimulações realistasControladores com behavior treesNowadays, Unmanned Vehicles (UV) are widespread around the world. Most of these vehicles require a great level of human control, and mission success is reliant on this dependency. Therefore, it is important to use machine learning techniques that will train the robotic controllers to automate the control, making the process more efficient. Evolutionary strategies may be the key to having robust and adaptive learning in robotic systems. Many studies involving UV systems and evolutionary strategies have been conducted in the last years, however, there are still research gaps that need to be addressed, such as the reality gap. The reality gap occurs when controllers trained in simulated environments fail to be transferred to real robots. This work proposes an approach for solving robotic tasks using realistic simulation and using evolutionary strategies to train controllers. The chosen setup is easily scalable for multirobot systems or swarm robots. In this thesis, the simulation architecture and setup are presented, including the drone simulation model and software. The drone model chosen for the simulations is available in the real world and widely used, such as the software and flight control unit. This relevant factor makes the transition to reality smoother and easier. Controllers using behavior trees were evolved using a developed evolutionary algorithm, and several experiments were conducted. Results demonstrated that it is possible to evolve a robotic controller in realistic simulation environments, using a simulated drone model that exists in the real world, and also the same flight control unit and operating system that is generally used in real world experiments.Atualmente os Veículos Não Tripulados (VNT) encontram-se difundidos por todo o Mundo. A maioria destes veículos requerem um elevado controlo humano, e o sucesso das missões está diretamente dependente deste fator. Assim, é importante utilizar técnicas de aprendizagem automática que irão treinar os controladores dos VNT, de modo a automatizar o controlo, tornando o processo mais eficiente. As estratégias evolutivas podem ser a chave para uma aprendizagem robusta e adaptativa em sistemas robóticos. Vários estudos têm sido realizados nos últimos anos, contudo, existem lacunas que precisam de ser abordadas, tais como o reality gap. Este facto ocorre quando os controladores treinados em ambientes simulados falham ao serem transferidos para VNT reais. Este trabalho propõe uma abordagem para a resolução de missões com VNT, utilizando um simulador realista e estratégias evolutivas para treinar controladores. A arquitetura escolhida é facilmente escalável para sistemas com múltiplos VNT. Nesta tese, é apresentada a arquitetura e configuração do ambiente de simulação, incluindo o modelo e software de simulação do VNT. O modelo de VNT escolhido para as simulações é um modelo real e amplamente utilizado, assim como o software e a unidade de controlo de voo. Este fator é relevante e torna a transição para a realidade mais suave. É desenvolvido um algoritmo evolucionário para treinar um controlador, que utiliza behavior trees, e realizados diversos testes. Os resultados demonstram que é possível evoluir um controlador em ambientes de simulação realistas, utilizando um VNT simulado mas real, assim como utilizando as mesmas unidades de controlo de voo e software que são amplamente utilizados em ambiente real.2023-01-27T12:12:35Z2022-12-20T00:00:00Z2022-12-202022-11info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10071/27539TID:203175956engRodrigues, Alexandre Valérioinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-09T17:32:10Zoai:repositorio.iscte-iul.pt:10071/27539Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T22:14:29.858359Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Evolutionary strategies in swarm robotics controllers |
title |
Evolutionary strategies in swarm robotics controllers |
spellingShingle |
Evolutionary strategies in swarm robotics controllers Rodrigues, Alexandre Valério Evolutionary algorithms Unmanned vehicles Realistic simulations Behavior tree controllers Algoritmos evolucionários Veículos não tripulados Simulações realistas Controladores com behavior trees |
title_short |
Evolutionary strategies in swarm robotics controllers |
title_full |
Evolutionary strategies in swarm robotics controllers |
title_fullStr |
Evolutionary strategies in swarm robotics controllers |
title_full_unstemmed |
Evolutionary strategies in swarm robotics controllers |
title_sort |
Evolutionary strategies in swarm robotics controllers |
author |
Rodrigues, Alexandre Valério |
author_facet |
Rodrigues, Alexandre Valério |
author_role |
author |
dc.contributor.author.fl_str_mv |
Rodrigues, Alexandre Valério |
dc.subject.por.fl_str_mv |
Evolutionary algorithms Unmanned vehicles Realistic simulations Behavior tree controllers Algoritmos evolucionários Veículos não tripulados Simulações realistas Controladores com behavior trees |
topic |
Evolutionary algorithms Unmanned vehicles Realistic simulations Behavior tree controllers Algoritmos evolucionários Veículos não tripulados Simulações realistas Controladores com behavior trees |
description |
Nowadays, Unmanned Vehicles (UV) are widespread around the world. Most of these vehicles require a great level of human control, and mission success is reliant on this dependency. Therefore, it is important to use machine learning techniques that will train the robotic controllers to automate the control, making the process more efficient. Evolutionary strategies may be the key to having robust and adaptive learning in robotic systems. Many studies involving UV systems and evolutionary strategies have been conducted in the last years, however, there are still research gaps that need to be addressed, such as the reality gap. The reality gap occurs when controllers trained in simulated environments fail to be transferred to real robots. This work proposes an approach for solving robotic tasks using realistic simulation and using evolutionary strategies to train controllers. The chosen setup is easily scalable for multirobot systems or swarm robots. In this thesis, the simulation architecture and setup are presented, including the drone simulation model and software. The drone model chosen for the simulations is available in the real world and widely used, such as the software and flight control unit. This relevant factor makes the transition to reality smoother and easier. Controllers using behavior trees were evolved using a developed evolutionary algorithm, and several experiments were conducted. Results demonstrated that it is possible to evolve a robotic controller in realistic simulation environments, using a simulated drone model that exists in the real world, and also the same flight control unit and operating system that is generally used in real world experiments. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-12-20T00:00:00Z 2022-12-20 2022-11 2023-01-27T12:12:35Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10071/27539 TID:203175956 |
url |
http://hdl.handle.net/10071/27539 |
identifier_str_mv |
TID:203175956 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799134701954269184 |