Finite automata for Schreier graphs of virtually free groups

Detalhes bibliográficos
Autor(a) principal: Pedro V. Silva
Data de Publicação: 2016
Outros Autores: Xaro Soler-Escrivá, Enric Ventura
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: https://hdl.handle.net/10216/110912
Resumo: The Stallings construction for f.g. subgroups of free groups is generalized by introducing the concept of Stallings section, which allows efficient computation of the core of a Schreier graph based on edge folding. It is proved that the groups that admit Stallings sections are precisely the f.g. virtually free groups, this is proved through a constructive approach based on Bass-Serre theory. Complexity issues and applications are also discussed.
id RCAP_5240a1bf68aab9ee3306fb82d0d90de5
oai_identifier_str oai:repositorio-aberto.up.pt:10216/110912
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Finite automata for Schreier graphs of virtually free groupsThe Stallings construction for f.g. subgroups of free groups is generalized by introducing the concept of Stallings section, which allows efficient computation of the core of a Schreier graph based on edge folding. It is proved that the groups that admit Stallings sections are precisely the f.g. virtually free groups, this is proved through a constructive approach based on Bass-Serre theory. Complexity issues and applications are also discussed.20162016-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/10216/110912eng1433-588310.1515/jgth-2015-0028Pedro V. SilvaXaro Soler-EscriváEnric Venturainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-29T13:33:55Zoai:repositorio-aberto.up.pt:10216/110912Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T23:42:44.359660Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Finite automata for Schreier graphs of virtually free groups
title Finite automata for Schreier graphs of virtually free groups
spellingShingle Finite automata for Schreier graphs of virtually free groups
Pedro V. Silva
title_short Finite automata for Schreier graphs of virtually free groups
title_full Finite automata for Schreier graphs of virtually free groups
title_fullStr Finite automata for Schreier graphs of virtually free groups
title_full_unstemmed Finite automata for Schreier graphs of virtually free groups
title_sort Finite automata for Schreier graphs of virtually free groups
author Pedro V. Silva
author_facet Pedro V. Silva
Xaro Soler-Escrivá
Enric Ventura
author_role author
author2 Xaro Soler-Escrivá
Enric Ventura
author2_role author
author
dc.contributor.author.fl_str_mv Pedro V. Silva
Xaro Soler-Escrivá
Enric Ventura
description The Stallings construction for f.g. subgroups of free groups is generalized by introducing the concept of Stallings section, which allows efficient computation of the core of a Schreier graph based on edge folding. It is proved that the groups that admit Stallings sections are precisely the f.g. virtually free groups, this is proved through a constructive approach based on Bass-Serre theory. Complexity issues and applications are also discussed.
publishDate 2016
dc.date.none.fl_str_mv 2016
2016-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/10216/110912
url https://hdl.handle.net/10216/110912
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 1433-5883
10.1515/jgth-2015-0028
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799135742789681152