Finite automata for Schreier graphs of virtually free groups
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | https://hdl.handle.net/10216/110912 |
Resumo: | The Stallings construction for f.g. subgroups of free groups is generalized by introducing the concept of Stallings section, which allows efficient computation of the core of a Schreier graph based on edge folding. It is proved that the groups that admit Stallings sections are precisely the f.g. virtually free groups, this is proved through a constructive approach based on Bass-Serre theory. Complexity issues and applications are also discussed. |
id |
RCAP_5240a1bf68aab9ee3306fb82d0d90de5 |
---|---|
oai_identifier_str |
oai:repositorio-aberto.up.pt:10216/110912 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Finite automata for Schreier graphs of virtually free groupsThe Stallings construction for f.g. subgroups of free groups is generalized by introducing the concept of Stallings section, which allows efficient computation of the core of a Schreier graph based on edge folding. It is proved that the groups that admit Stallings sections are precisely the f.g. virtually free groups, this is proved through a constructive approach based on Bass-Serre theory. Complexity issues and applications are also discussed.20162016-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/10216/110912eng1433-588310.1515/jgth-2015-0028Pedro V. SilvaXaro Soler-EscriváEnric Venturainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-29T13:33:55Zoai:repositorio-aberto.up.pt:10216/110912Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T23:42:44.359660Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Finite automata for Schreier graphs of virtually free groups |
title |
Finite automata for Schreier graphs of virtually free groups |
spellingShingle |
Finite automata for Schreier graphs of virtually free groups Pedro V. Silva |
title_short |
Finite automata for Schreier graphs of virtually free groups |
title_full |
Finite automata for Schreier graphs of virtually free groups |
title_fullStr |
Finite automata for Schreier graphs of virtually free groups |
title_full_unstemmed |
Finite automata for Schreier graphs of virtually free groups |
title_sort |
Finite automata for Schreier graphs of virtually free groups |
author |
Pedro V. Silva |
author_facet |
Pedro V. Silva Xaro Soler-Escrivá Enric Ventura |
author_role |
author |
author2 |
Xaro Soler-Escrivá Enric Ventura |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Pedro V. Silva Xaro Soler-Escrivá Enric Ventura |
description |
The Stallings construction for f.g. subgroups of free groups is generalized by introducing the concept of Stallings section, which allows efficient computation of the core of a Schreier graph based on edge folding. It is proved that the groups that admit Stallings sections are precisely the f.g. virtually free groups, this is proved through a constructive approach based on Bass-Serre theory. Complexity issues and applications are also discussed. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016 2016-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/10216/110912 |
url |
https://hdl.handle.net/10216/110912 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1433-5883 10.1515/jgth-2015-0028 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799135742789681152 |