Spinning black holes in shift-symmetric Horndeski theory

Detalhes bibliográficos
Autor(a) principal: Delgado, J. F. M.
Data de Publicação: 2020
Outros Autores: Herdeiro, C. A. R., Radu, E.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/29847
Resumo: We construct spinning black holes (BHs) in shift-symmetric Horndeski theory. This is an Einstein-scalar-Gauss-Bonnet model wherein the (real) scalar field couples linearly to the Gauss-Bonnet curvature squared combination. The BH solutions constructed are stationary, axially symmetric and asymptotically flat. They possess a non-trivial scalar field outside their regular event horizon; thus they have scalar hair. The scalar "charge" is not, however, an independent macroscopic degree of freedom. It is proportional to the Hawking temperature, as in the static limit, wherein the BHs reduce to the spherical solutions found by Sotirou and Zhou. The spinning BHs herein are found by solving non-perturbatively the field equations, numerically. We present an overview of the parameter space of the solutions together with a study of their basic geometric and phenomenological properties. These solutions are compared with the spinning BHs in the Einstein-dilaton-Gauss-Bonnet model and the Kerr BH of vacuum General Relativity. As for the former, and in contrast with the latter, there is a minimal BH size and small violations of the Kerr bound. Phenomenological differences with respect to either the former or the latter, however, are small for illustrative observables, being of the order of a few percent, at most.
id RCAP_529f1f474bb4e5d80c002de1888d53ec
oai_identifier_str oai:ria.ua.pt:10773/29847
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Spinning black holes in shift-symmetric Horndeski theoryBlack HolesClassical Theories of GravityWe construct spinning black holes (BHs) in shift-symmetric Horndeski theory. This is an Einstein-scalar-Gauss-Bonnet model wherein the (real) scalar field couples linearly to the Gauss-Bonnet curvature squared combination. The BH solutions constructed are stationary, axially symmetric and asymptotically flat. They possess a non-trivial scalar field outside their regular event horizon; thus they have scalar hair. The scalar "charge" is not, however, an independent macroscopic degree of freedom. It is proportional to the Hawking temperature, as in the static limit, wherein the BHs reduce to the spherical solutions found by Sotirou and Zhou. The spinning BHs herein are found by solving non-perturbatively the field equations, numerically. We present an overview of the parameter space of the solutions together with a study of their basic geometric and phenomenological properties. These solutions are compared with the spinning BHs in the Einstein-dilaton-Gauss-Bonnet model and the Kerr BH of vacuum General Relativity. As for the former, and in contrast with the latter, there is a minimal BH size and small violations of the Kerr bound. Phenomenological differences with respect to either the former or the latter, however, are small for illustrative observables, being of the order of a few percent, at most.Springer2020-11-20T15:26:27Z2020-04-01T00:00:00Z2020-04-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/29847eng1126-6708Delgado, J. F. M.Herdeiro, C. A. R.Radu, E.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:57:40Zoai:ria.ua.pt:10773/29847Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:02:03.254349Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Spinning black holes in shift-symmetric Horndeski theory
title Spinning black holes in shift-symmetric Horndeski theory
spellingShingle Spinning black holes in shift-symmetric Horndeski theory
Delgado, J. F. M.
Black Holes
Classical Theories of Gravity
title_short Spinning black holes in shift-symmetric Horndeski theory
title_full Spinning black holes in shift-symmetric Horndeski theory
title_fullStr Spinning black holes in shift-symmetric Horndeski theory
title_full_unstemmed Spinning black holes in shift-symmetric Horndeski theory
title_sort Spinning black holes in shift-symmetric Horndeski theory
author Delgado, J. F. M.
author_facet Delgado, J. F. M.
Herdeiro, C. A. R.
Radu, E.
author_role author
author2 Herdeiro, C. A. R.
Radu, E.
author2_role author
author
dc.contributor.author.fl_str_mv Delgado, J. F. M.
Herdeiro, C. A. R.
Radu, E.
dc.subject.por.fl_str_mv Black Holes
Classical Theories of Gravity
topic Black Holes
Classical Theories of Gravity
description We construct spinning black holes (BHs) in shift-symmetric Horndeski theory. This is an Einstein-scalar-Gauss-Bonnet model wherein the (real) scalar field couples linearly to the Gauss-Bonnet curvature squared combination. The BH solutions constructed are stationary, axially symmetric and asymptotically flat. They possess a non-trivial scalar field outside their regular event horizon; thus they have scalar hair. The scalar "charge" is not, however, an independent macroscopic degree of freedom. It is proportional to the Hawking temperature, as in the static limit, wherein the BHs reduce to the spherical solutions found by Sotirou and Zhou. The spinning BHs herein are found by solving non-perturbatively the field equations, numerically. We present an overview of the parameter space of the solutions together with a study of their basic geometric and phenomenological properties. These solutions are compared with the spinning BHs in the Einstein-dilaton-Gauss-Bonnet model and the Kerr BH of vacuum General Relativity. As for the former, and in contrast with the latter, there is a minimal BH size and small violations of the Kerr bound. Phenomenological differences with respect to either the former or the latter, however, are small for illustrative observables, being of the order of a few percent, at most.
publishDate 2020
dc.date.none.fl_str_mv 2020-11-20T15:26:27Z
2020-04-01T00:00:00Z
2020-04-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/29847
url http://hdl.handle.net/10773/29847
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 1126-6708
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137676177178624