Proactive resource management for cloud of services environments
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/34074 |
Resumo: | Over the last few years, the advancements in virtualization and containerization technologies have introduced the concept of the microservices architecture. Despite this architectural paradigm bringing many advantages to cloud providers, it also comes with some disadvantages since the division of monolithic applications into microservices with different, narrowly focused purposes and requirements creates the necessity for a monitoring system capable of accurately identifying the specific resources a service may be lacking and allocating them accordingly. The objective of this dissertation is to design, implement and test a service oriented monitoring system for kubernetes clusters using open source technologies, capable of dealing with the diversity of the requirements of the provided services. This system can also autonomously predict workload variations and resource shortages based on a forecasting module, and ensuring that additional resources are quickly and efficiently allocated whenever necessary. In order to accomplish this, we will be analysing the current monitoring techniques and challenges for service based cloud environments, evaluating the effectiveness of the monitoring tools provided by kubernetes, and designing an architecture that complements them with support service specific metrics, and integrating a workload prediction module to forecast workloads and allocate resources proactively. The system was deployed first on a smaller scale cluster, to determine the shortcomings of the kubernetes monitoring tools, and than on a larger scale public cloud to validate the proposed architecture in a realistic scenario. The tests was done with a dataset of user sessions, which was analysed to create daily user workload patterns and used to train the forecasting algorithm implemented in the monitoring system. The results show that the additions of the custom metrics module and the proactive module to the monitoring and scaling systems improve response time and the efficiency of scaling decisions, while reducing service level agreements violations and service downtime. |
id |
RCAP_52b87256dea1944f438b49df5709e8b7 |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/34074 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Proactive resource management for cloud of services environmentsCloud service managementCloud monitoringProactive resource managementOver the last few years, the advancements in virtualization and containerization technologies have introduced the concept of the microservices architecture. Despite this architectural paradigm bringing many advantages to cloud providers, it also comes with some disadvantages since the division of monolithic applications into microservices with different, narrowly focused purposes and requirements creates the necessity for a monitoring system capable of accurately identifying the specific resources a service may be lacking and allocating them accordingly. The objective of this dissertation is to design, implement and test a service oriented monitoring system for kubernetes clusters using open source technologies, capable of dealing with the diversity of the requirements of the provided services. This system can also autonomously predict workload variations and resource shortages based on a forecasting module, and ensuring that additional resources are quickly and efficiently allocated whenever necessary. In order to accomplish this, we will be analysing the current monitoring techniques and challenges for service based cloud environments, evaluating the effectiveness of the monitoring tools provided by kubernetes, and designing an architecture that complements them with support service specific metrics, and integrating a workload prediction module to forecast workloads and allocate resources proactively. The system was deployed first on a smaller scale cluster, to determine the shortcomings of the kubernetes monitoring tools, and than on a larger scale public cloud to validate the proposed architecture in a realistic scenario. The tests was done with a dataset of user sessions, which was analysed to create daily user workload patterns and used to train the forecasting algorithm implemented in the monitoring system. The results show that the additions of the custom metrics module and the proactive module to the monitoring and scaling systems improve response time and the efficiency of scaling decisions, while reducing service level agreements violations and service downtime.Nos últimos anos, os avanços nas tecnologias de containerização e virtualização têm vindo a introduzir um novo conceito de arquitetura de microserviços. Apesar deste novo paradigma trazer vantagens para cloud providers também traz algumas desvantagens, pois a divisão de aplicações monolíticas em microserviços, com propósitos e requisitos específicos, cria a necessidade de um sistema de monitorização capaz de detetar com precisão os recursos específicos que estão em falta para um serviço, e providenciá-los de acordo com os requisitos. O objetivo desta dissertação é desenhar, implementar e testar um sistema de monitorização orientado a serviços para clusters kubernetes, utilizando ferramentas open-source capazes de lidar com a diversidade de requisitos dos serviços em causa. Este sistema também deve prever autonomamente variações na carga e escassez de recursos com base num módulo de predição, e garantir que os recursos adicionais são fornecidos de forma rápida e eficiente sempre que necessários. Para o efeito: (1) serão analisadas as técnicas e os desafios atuais para a monitorização de serviços em ambientes de cloud para avaliar a eficácia das ferramentas de monitorização disponibilizadas pelos kubernetes; (2) será desenvolvida uma arquitetura complementar com suporte para métricas customizavéis específicas a cada serviço; (3) e será integrado um preditor de carga dos serviços capaz de antecipar picos de utilizadores e alocar recursos proativamente. O sistema foi implementado, primeiro num cluster de pequena escala para determinar as deficiências das ferramentas de monitorização dos kubernetes, e posteriormente em uma nuvem pública de maior escala, de forma a validar a arquitetura proposta em um cenário realista. Os testes foram realizados com um dataset de sessões de utilizadores, que foi analisado para criar padrões diários de picos de utilizadores e para treinar um algoritmo de predição implementado no sistema de monitorização. Os resultados obtidos mostram que as extensões do módulo de métricas customizáveis e do módulo de predição, aos sistemas de monitorização e escalonamento, melhoram a eficiência das políticas de escalonamento e reduzem o tempo de resposta e as ocorrências de violações de acordos de serviço do sistema.2022-06-28T13:17:22Z2021-12-17T00:00:00Z2021-12-17info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/34074engMarques, Gonçalo João Lopes de Figueiredo d'Almeidainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T12:05:40Zoai:ria.ua.pt:10773/34074Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:05:25.992251Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Proactive resource management for cloud of services environments |
title |
Proactive resource management for cloud of services environments |
spellingShingle |
Proactive resource management for cloud of services environments Marques, Gonçalo João Lopes de Figueiredo d'Almeida Cloud service management Cloud monitoring Proactive resource management |
title_short |
Proactive resource management for cloud of services environments |
title_full |
Proactive resource management for cloud of services environments |
title_fullStr |
Proactive resource management for cloud of services environments |
title_full_unstemmed |
Proactive resource management for cloud of services environments |
title_sort |
Proactive resource management for cloud of services environments |
author |
Marques, Gonçalo João Lopes de Figueiredo d'Almeida |
author_facet |
Marques, Gonçalo João Lopes de Figueiredo d'Almeida |
author_role |
author |
dc.contributor.author.fl_str_mv |
Marques, Gonçalo João Lopes de Figueiredo d'Almeida |
dc.subject.por.fl_str_mv |
Cloud service management Cloud monitoring Proactive resource management |
topic |
Cloud service management Cloud monitoring Proactive resource management |
description |
Over the last few years, the advancements in virtualization and containerization technologies have introduced the concept of the microservices architecture. Despite this architectural paradigm bringing many advantages to cloud providers, it also comes with some disadvantages since the division of monolithic applications into microservices with different, narrowly focused purposes and requirements creates the necessity for a monitoring system capable of accurately identifying the specific resources a service may be lacking and allocating them accordingly. The objective of this dissertation is to design, implement and test a service oriented monitoring system for kubernetes clusters using open source technologies, capable of dealing with the diversity of the requirements of the provided services. This system can also autonomously predict workload variations and resource shortages based on a forecasting module, and ensuring that additional resources are quickly and efficiently allocated whenever necessary. In order to accomplish this, we will be analysing the current monitoring techniques and challenges for service based cloud environments, evaluating the effectiveness of the monitoring tools provided by kubernetes, and designing an architecture that complements them with support service specific metrics, and integrating a workload prediction module to forecast workloads and allocate resources proactively. The system was deployed first on a smaller scale cluster, to determine the shortcomings of the kubernetes monitoring tools, and than on a larger scale public cloud to validate the proposed architecture in a realistic scenario. The tests was done with a dataset of user sessions, which was analysed to create daily user workload patterns and used to train the forecasting algorithm implemented in the monitoring system. The results show that the additions of the custom metrics module and the proactive module to the monitoring and scaling systems improve response time and the efficiency of scaling decisions, while reducing service level agreements violations and service downtime. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-12-17T00:00:00Z 2021-12-17 2022-06-28T13:17:22Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/34074 |
url |
http://hdl.handle.net/10773/34074 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137709465272320 |