Forecasting bivalve landings with multiple regression and data mining techniques: The case of the Portuguese Artisanal Dredge Fleet
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://repositorio.inesctec.pt/handle/123456789/5777 http://dx.doi.org/10.1016/j.marpol.2017.07.013 |
Resumo: | This paper develops a decision support tool that can help fishery authorities to forecast bivalve landings for the dredge fleet accounting for several contextual conditions. These include weather conditions, phytotoxins episodes, stock-biomass indicators per species and tourism levels. Vessel characteristics and fishing effort are also taken into account for the estimation of landings. The relationship between these factors and monthly quantities landed per vessel is explored using multiple linear regression models and data mining techniques (random forests, support vector machines and neural networks). The models are specified for different regions in the Portugal mainland (Northwest, Southwest and South) using six years of data 2010-2015). Results showed that the impact of the contextual factors varies between regions and also depends on the vessels target species. The data mining techniques, namely the random forests, proved to be a robust decision support tool in this context, outperforming the predictive performance of the most popular technique used in this context, i.e. linear regression. |
id |
RCAP_52cf70e42ed2d554fb5315ffcb275045 |
---|---|
oai_identifier_str |
oai:repositorio.inesctec.pt:123456789/5777 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Forecasting bivalve landings with multiple regression and data mining techniques: The case of the Portuguese Artisanal Dredge FleetThis paper develops a decision support tool that can help fishery authorities to forecast bivalve landings for the dredge fleet accounting for several contextual conditions. These include weather conditions, phytotoxins episodes, stock-biomass indicators per species and tourism levels. Vessel characteristics and fishing effort are also taken into account for the estimation of landings. The relationship between these factors and monthly quantities landed per vessel is explored using multiple linear regression models and data mining techniques (random forests, support vector machines and neural networks). The models are specified for different regions in the Portugal mainland (Northwest, Southwest and South) using six years of data 2010-2015). Results showed that the impact of the contextual factors varies between regions and also depends on the vessels target species. The data mining techniques, namely the random forests, proved to be a robust decision support tool in this context, outperforming the predictive performance of the most popular technique used in this context, i.e. linear regression.2018-01-09T16:44:59Z2017-01-01T00:00:00Z2017info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://repositorio.inesctec.pt/handle/123456789/5777http://dx.doi.org/10.1016/j.marpol.2017.07.013engManuela Maria OliveiraAna CamanhoWalden,JBVera MiguéisFerreira,NBGaspar,MBinfo:eu-repo/semantics/embargoedAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-05-15T10:20:03Zoai:repositorio.inesctec.pt:123456789/5777Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T17:52:36.578848Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Forecasting bivalve landings with multiple regression and data mining techniques: The case of the Portuguese Artisanal Dredge Fleet |
title |
Forecasting bivalve landings with multiple regression and data mining techniques: The case of the Portuguese Artisanal Dredge Fleet |
spellingShingle |
Forecasting bivalve landings with multiple regression and data mining techniques: The case of the Portuguese Artisanal Dredge Fleet Manuela Maria Oliveira |
title_short |
Forecasting bivalve landings with multiple regression and data mining techniques: The case of the Portuguese Artisanal Dredge Fleet |
title_full |
Forecasting bivalve landings with multiple regression and data mining techniques: The case of the Portuguese Artisanal Dredge Fleet |
title_fullStr |
Forecasting bivalve landings with multiple regression and data mining techniques: The case of the Portuguese Artisanal Dredge Fleet |
title_full_unstemmed |
Forecasting bivalve landings with multiple regression and data mining techniques: The case of the Portuguese Artisanal Dredge Fleet |
title_sort |
Forecasting bivalve landings with multiple regression and data mining techniques: The case of the Portuguese Artisanal Dredge Fleet |
author |
Manuela Maria Oliveira |
author_facet |
Manuela Maria Oliveira Ana Camanho Walden,JB Vera Miguéis Ferreira,NB Gaspar,MB |
author_role |
author |
author2 |
Ana Camanho Walden,JB Vera Miguéis Ferreira,NB Gaspar,MB |
author2_role |
author author author author author |
dc.contributor.author.fl_str_mv |
Manuela Maria Oliveira Ana Camanho Walden,JB Vera Miguéis Ferreira,NB Gaspar,MB |
description |
This paper develops a decision support tool that can help fishery authorities to forecast bivalve landings for the dredge fleet accounting for several contextual conditions. These include weather conditions, phytotoxins episodes, stock-biomass indicators per species and tourism levels. Vessel characteristics and fishing effort are also taken into account for the estimation of landings. The relationship between these factors and monthly quantities landed per vessel is explored using multiple linear regression models and data mining techniques (random forests, support vector machines and neural networks). The models are specified for different regions in the Portugal mainland (Northwest, Southwest and South) using six years of data 2010-2015). Results showed that the impact of the contextual factors varies between regions and also depends on the vessels target species. The data mining techniques, namely the random forests, proved to be a robust decision support tool in this context, outperforming the predictive performance of the most popular technique used in this context, i.e. linear regression. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-01-01T00:00:00Z 2017 2018-01-09T16:44:59Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://repositorio.inesctec.pt/handle/123456789/5777 http://dx.doi.org/10.1016/j.marpol.2017.07.013 |
url |
http://repositorio.inesctec.pt/handle/123456789/5777 http://dx.doi.org/10.1016/j.marpol.2017.07.013 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
eu_rights_str_mv |
embargoedAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799131602041700352 |