Forecasting bivalve landings with multiple regression and data mining techniques: The case of the Portuguese Artisanal Dredge Fleet

Detalhes bibliográficos
Autor(a) principal: Manuela Maria Oliveira
Data de Publicação: 2017
Outros Autores: Ana Camanho, Walden,JB, Vera Miguéis, Ferreira,NB, Gaspar,MB
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://repositorio.inesctec.pt/handle/123456789/5777
http://dx.doi.org/10.1016/j.marpol.2017.07.013
Resumo: This paper develops a decision support tool that can help fishery authorities to forecast bivalve landings for the dredge fleet accounting for several contextual conditions. These include weather conditions, phytotoxins episodes, stock-biomass indicators per species and tourism levels. Vessel characteristics and fishing effort are also taken into account for the estimation of landings. The relationship between these factors and monthly quantities landed per vessel is explored using multiple linear regression models and data mining techniques (random forests, support vector machines and neural networks). The models are specified for different regions in the Portugal mainland (Northwest, Southwest and South) using six years of data 2010-2015). Results showed that the impact of the contextual factors varies between regions and also depends on the vessels target species. The data mining techniques, namely the random forests, proved to be a robust decision support tool in this context, outperforming the predictive performance of the most popular technique used in this context, i.e. linear regression.
id RCAP_52cf70e42ed2d554fb5315ffcb275045
oai_identifier_str oai:repositorio.inesctec.pt:123456789/5777
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Forecasting bivalve landings with multiple regression and data mining techniques: The case of the Portuguese Artisanal Dredge FleetThis paper develops a decision support tool that can help fishery authorities to forecast bivalve landings for the dredge fleet accounting for several contextual conditions. These include weather conditions, phytotoxins episodes, stock-biomass indicators per species and tourism levels. Vessel characteristics and fishing effort are also taken into account for the estimation of landings. The relationship between these factors and monthly quantities landed per vessel is explored using multiple linear regression models and data mining techniques (random forests, support vector machines and neural networks). The models are specified for different regions in the Portugal mainland (Northwest, Southwest and South) using six years of data 2010-2015). Results showed that the impact of the contextual factors varies between regions and also depends on the vessels target species. The data mining techniques, namely the random forests, proved to be a robust decision support tool in this context, outperforming the predictive performance of the most popular technique used in this context, i.e. linear regression.2018-01-09T16:44:59Z2017-01-01T00:00:00Z2017info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://repositorio.inesctec.pt/handle/123456789/5777http://dx.doi.org/10.1016/j.marpol.2017.07.013engManuela Maria OliveiraAna CamanhoWalden,JBVera MiguéisFerreira,NBGaspar,MBinfo:eu-repo/semantics/embargoedAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-05-15T10:20:03Zoai:repositorio.inesctec.pt:123456789/5777Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T17:52:36.578848Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Forecasting bivalve landings with multiple regression and data mining techniques: The case of the Portuguese Artisanal Dredge Fleet
title Forecasting bivalve landings with multiple regression and data mining techniques: The case of the Portuguese Artisanal Dredge Fleet
spellingShingle Forecasting bivalve landings with multiple regression and data mining techniques: The case of the Portuguese Artisanal Dredge Fleet
Manuela Maria Oliveira
title_short Forecasting bivalve landings with multiple regression and data mining techniques: The case of the Portuguese Artisanal Dredge Fleet
title_full Forecasting bivalve landings with multiple regression and data mining techniques: The case of the Portuguese Artisanal Dredge Fleet
title_fullStr Forecasting bivalve landings with multiple regression and data mining techniques: The case of the Portuguese Artisanal Dredge Fleet
title_full_unstemmed Forecasting bivalve landings with multiple regression and data mining techniques: The case of the Portuguese Artisanal Dredge Fleet
title_sort Forecasting bivalve landings with multiple regression and data mining techniques: The case of the Portuguese Artisanal Dredge Fleet
author Manuela Maria Oliveira
author_facet Manuela Maria Oliveira
Ana Camanho
Walden,JB
Vera Miguéis
Ferreira,NB
Gaspar,MB
author_role author
author2 Ana Camanho
Walden,JB
Vera Miguéis
Ferreira,NB
Gaspar,MB
author2_role author
author
author
author
author
dc.contributor.author.fl_str_mv Manuela Maria Oliveira
Ana Camanho
Walden,JB
Vera Miguéis
Ferreira,NB
Gaspar,MB
description This paper develops a decision support tool that can help fishery authorities to forecast bivalve landings for the dredge fleet accounting for several contextual conditions. These include weather conditions, phytotoxins episodes, stock-biomass indicators per species and tourism levels. Vessel characteristics and fishing effort are also taken into account for the estimation of landings. The relationship between these factors and monthly quantities landed per vessel is explored using multiple linear regression models and data mining techniques (random forests, support vector machines and neural networks). The models are specified for different regions in the Portugal mainland (Northwest, Southwest and South) using six years of data 2010-2015). Results showed that the impact of the contextual factors varies between regions and also depends on the vessels target species. The data mining techniques, namely the random forests, proved to be a robust decision support tool in this context, outperforming the predictive performance of the most popular technique used in this context, i.e. linear regression.
publishDate 2017
dc.date.none.fl_str_mv 2017-01-01T00:00:00Z
2017
2018-01-09T16:44:59Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://repositorio.inesctec.pt/handle/123456789/5777
http://dx.doi.org/10.1016/j.marpol.2017.07.013
url http://repositorio.inesctec.pt/handle/123456789/5777
http://dx.doi.org/10.1016/j.marpol.2017.07.013
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/embargoedAccess
eu_rights_str_mv embargoedAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799131602041700352