On the Impact of Distance Metrics in Instance-Based Learning Algorithms

Detalhes bibliográficos
Autor(a) principal: Lopes, Noel
Data de Publicação: 2015
Outros Autores: Ribeiro, Bernardete
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10314/3247
https://doi.org/10.1007/978-3-319-19390-8
Resumo: In this paper we analyze the impact of distinct distance metrics in instance-based learning algorithms. In particular, we look at the well-known 1-Nearest Neighbor (NN) algorithm and the Incremental Hypersphere Classifier (IHC) algorithm, which proved to be efficient in large-scale recognition problems and online learning. We provide a detailed empirical evaluation on fifteen datasets with several sizes and dimensionality. We then statistically show that the Euclidean and Manhattan metrics significantly yield good results in a wide range of problems. However, grid-search like methods are often desirable to determine the best matching metric depending on the problem and algorithm.
id RCAP_540be6eef83e5200da72fe828c3bf119
oai_identifier_str oai:bdigital.ipg.pt:10314/3247
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling On the Impact of Distance Metrics in Instance-Based Learning AlgorithmsDistance metricsInstance-based learningIncremental learningNearest NeighborIncremental Hypersphere Classifier (IHC)In this paper we analyze the impact of distinct distance metrics in instance-based learning algorithms. In particular, we look at the well-known 1-Nearest Neighbor (NN) algorithm and the Incremental Hypersphere Classifier (IHC) algorithm, which proved to be efficient in large-scale recognition problems and online learning. We provide a detailed empirical evaluation on fifteen datasets with several sizes and dimensionality. We then statistically show that the Euclidean and Manhattan metrics significantly yield good results in a wide range of problems. However, grid-search like methods are often desirable to determine the best matching metric depending on the problem and algorithm.Springer International Publishing Switzerland2016-11-18T20:29:30Z2016-11-182015-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10314/3247http://hdl.handle.net/10314/3247https://doi.org/10.1007/978-3-319-19390-8engLopes, NoelRibeiro, Bernardeteinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-01-14T02:56:40Zoai:bdigital.ipg.pt:10314/3247Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T01:42:36.110250Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv On the Impact of Distance Metrics in Instance-Based Learning Algorithms
title On the Impact of Distance Metrics in Instance-Based Learning Algorithms
spellingShingle On the Impact of Distance Metrics in Instance-Based Learning Algorithms
Lopes, Noel
Distance metrics
Instance-based learning
Incremental learning
Nearest Neighbor
Incremental Hypersphere Classifier (IHC)
title_short On the Impact of Distance Metrics in Instance-Based Learning Algorithms
title_full On the Impact of Distance Metrics in Instance-Based Learning Algorithms
title_fullStr On the Impact of Distance Metrics in Instance-Based Learning Algorithms
title_full_unstemmed On the Impact of Distance Metrics in Instance-Based Learning Algorithms
title_sort On the Impact of Distance Metrics in Instance-Based Learning Algorithms
author Lopes, Noel
author_facet Lopes, Noel
Ribeiro, Bernardete
author_role author
author2 Ribeiro, Bernardete
author2_role author
dc.contributor.author.fl_str_mv Lopes, Noel
Ribeiro, Bernardete
dc.subject.por.fl_str_mv Distance metrics
Instance-based learning
Incremental learning
Nearest Neighbor
Incremental Hypersphere Classifier (IHC)
topic Distance metrics
Instance-based learning
Incremental learning
Nearest Neighbor
Incremental Hypersphere Classifier (IHC)
description In this paper we analyze the impact of distinct distance metrics in instance-based learning algorithms. In particular, we look at the well-known 1-Nearest Neighbor (NN) algorithm and the Incremental Hypersphere Classifier (IHC) algorithm, which proved to be efficient in large-scale recognition problems and online learning. We provide a detailed empirical evaluation on fifteen datasets with several sizes and dimensionality. We then statistically show that the Euclidean and Manhattan metrics significantly yield good results in a wide range of problems. However, grid-search like methods are often desirable to determine the best matching metric depending on the problem and algorithm.
publishDate 2015
dc.date.none.fl_str_mv 2015-01-01T00:00:00Z
2016-11-18T20:29:30Z
2016-11-18
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10314/3247
http://hdl.handle.net/10314/3247
https://doi.org/10.1007/978-3-319-19390-8
url http://hdl.handle.net/10314/3247
https://doi.org/10.1007/978-3-319-19390-8
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Springer International Publishing Switzerland
publisher.none.fl_str_mv Springer International Publishing Switzerland
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799136919113695232