On the Impact of Distance Metrics in Instance-Based Learning Algorithms
Autor(a) principal: | |
---|---|
Data de Publicação: | 2015 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10314/3247 https://doi.org/10.1007/978-3-319-19390-8 |
Resumo: | In this paper we analyze the impact of distinct distance metrics in instance-based learning algorithms. In particular, we look at the well-known 1-Nearest Neighbor (NN) algorithm and the Incremental Hypersphere Classifier (IHC) algorithm, which proved to be efficient in large-scale recognition problems and online learning. We provide a detailed empirical evaluation on fifteen datasets with several sizes and dimensionality. We then statistically show that the Euclidean and Manhattan metrics significantly yield good results in a wide range of problems. However, grid-search like methods are often desirable to determine the best matching metric depending on the problem and algorithm. |
id |
RCAP_540be6eef83e5200da72fe828c3bf119 |
---|---|
oai_identifier_str |
oai:bdigital.ipg.pt:10314/3247 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
On the Impact of Distance Metrics in Instance-Based Learning AlgorithmsDistance metricsInstance-based learningIncremental learningNearest NeighborIncremental Hypersphere Classifier (IHC)In this paper we analyze the impact of distinct distance metrics in instance-based learning algorithms. In particular, we look at the well-known 1-Nearest Neighbor (NN) algorithm and the Incremental Hypersphere Classifier (IHC) algorithm, which proved to be efficient in large-scale recognition problems and online learning. We provide a detailed empirical evaluation on fifteen datasets with several sizes and dimensionality. We then statistically show that the Euclidean and Manhattan metrics significantly yield good results in a wide range of problems. However, grid-search like methods are often desirable to determine the best matching metric depending on the problem and algorithm.Springer International Publishing Switzerland2016-11-18T20:29:30Z2016-11-182015-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10314/3247http://hdl.handle.net/10314/3247https://doi.org/10.1007/978-3-319-19390-8engLopes, NoelRibeiro, Bernardeteinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-01-14T02:56:40Zoai:bdigital.ipg.pt:10314/3247Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T01:42:36.110250Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
On the Impact of Distance Metrics in Instance-Based Learning Algorithms |
title |
On the Impact of Distance Metrics in Instance-Based Learning Algorithms |
spellingShingle |
On the Impact of Distance Metrics in Instance-Based Learning Algorithms Lopes, Noel Distance metrics Instance-based learning Incremental learning Nearest Neighbor Incremental Hypersphere Classifier (IHC) |
title_short |
On the Impact of Distance Metrics in Instance-Based Learning Algorithms |
title_full |
On the Impact of Distance Metrics in Instance-Based Learning Algorithms |
title_fullStr |
On the Impact of Distance Metrics in Instance-Based Learning Algorithms |
title_full_unstemmed |
On the Impact of Distance Metrics in Instance-Based Learning Algorithms |
title_sort |
On the Impact of Distance Metrics in Instance-Based Learning Algorithms |
author |
Lopes, Noel |
author_facet |
Lopes, Noel Ribeiro, Bernardete |
author_role |
author |
author2 |
Ribeiro, Bernardete |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Lopes, Noel Ribeiro, Bernardete |
dc.subject.por.fl_str_mv |
Distance metrics Instance-based learning Incremental learning Nearest Neighbor Incremental Hypersphere Classifier (IHC) |
topic |
Distance metrics Instance-based learning Incremental learning Nearest Neighbor Incremental Hypersphere Classifier (IHC) |
description |
In this paper we analyze the impact of distinct distance metrics in instance-based learning algorithms. In particular, we look at the well-known 1-Nearest Neighbor (NN) algorithm and the Incremental Hypersphere Classifier (IHC) algorithm, which proved to be efficient in large-scale recognition problems and online learning. We provide a detailed empirical evaluation on fifteen datasets with several sizes and dimensionality. We then statistically show that the Euclidean and Manhattan metrics significantly yield good results in a wide range of problems. However, grid-search like methods are often desirable to determine the best matching metric depending on the problem and algorithm. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-01-01T00:00:00Z 2016-11-18T20:29:30Z 2016-11-18 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10314/3247 http://hdl.handle.net/10314/3247 https://doi.org/10.1007/978-3-319-19390-8 |
url |
http://hdl.handle.net/10314/3247 https://doi.org/10.1007/978-3-319-19390-8 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Springer International Publishing Switzerland |
publisher.none.fl_str_mv |
Springer International Publishing Switzerland |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799136919113695232 |