Deep learning for the classification of quenched jets
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/1822/75048 |
Resumo: | An important aspect of the study of Quark-Gluon Plasma (QGP) in ultra-relativistic collisions of heavy ions is the ability to identify, in experimental data, a subset of the jets that were strongly modified by the interaction with the QGP. In this work, we propose studying deep learning techniques for this purpose. Samples of $Z+$jet events were simulated in vacuum and medium and used to train deep neural networks with the objective of discriminating between medium- and vacuum-like jets. Dedicated Convolutional Neural Networks, Dense Neural Networks and Recurrent Neural Networks were developed and trained, and their performance was studied. Our results show the potential of these techniques for the identification of jet quenching effects induced by the presence of the QGP. |
id |
RCAP_540e4128c38f93a65364dc3c17a5a822 |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/75048 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Deep learning for the classification of quenched jetsHeavy Ion PhenomenologyJetsCiências Naturais::Ciências FísicasScience & TechnologyIndústria, inovação e infraestruturasAn important aspect of the study of Quark-Gluon Plasma (QGP) in ultra-relativistic collisions of heavy ions is the ability to identify, in experimental data, a subset of the jets that were strongly modified by the interaction with the QGP. In this work, we propose studying deep learning techniques for this purpose. Samples of $Z+$jet events were simulated in vacuum and medium and used to train deep neural networks with the objective of discriminating between medium- and vacuum-like jets. Dedicated Convolutional Neural Networks, Dense Neural Networks and Recurrent Neural Networks were developed and trained, and their performance was studied. Our results show the potential of these techniques for the identification of jet quenching effects induced by the presence of the QGP.Fundação para a Ciência e a Tecnologiainfo:eu-repo/semantics/publishedVersionSpringerUniversidade do MinhoApolinário,L.Castro, Nuno FilipeRomão, M. CrispimMilhano, J. G.Pedro, R.Peres, F. C. R.2021-11-292021-11-29T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/75048engApolinário, L., Castro, N.F., Romão, M.C. et al. Deep Learning for the classification of quenched jets. J. High Energ. Phys. 2021, 219 (2021). https://doi.org/10.1007/JHEP11(2021)2191434-60441434-605210.1007/JHEP11(2021)219219 (2021)https://link.springer.com/article/10.1007%2FJHEP11%282021%29219info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:51:49Zoai:repositorium.sdum.uminho.pt:1822/75048Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:50:48.647546Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Deep learning for the classification of quenched jets |
title |
Deep learning for the classification of quenched jets |
spellingShingle |
Deep learning for the classification of quenched jets Apolinário,L. Heavy Ion Phenomenology Jets Ciências Naturais::Ciências Físicas Science & Technology Indústria, inovação e infraestruturas |
title_short |
Deep learning for the classification of quenched jets |
title_full |
Deep learning for the classification of quenched jets |
title_fullStr |
Deep learning for the classification of quenched jets |
title_full_unstemmed |
Deep learning for the classification of quenched jets |
title_sort |
Deep learning for the classification of quenched jets |
author |
Apolinário,L. |
author_facet |
Apolinário,L. Castro, Nuno Filipe Romão, M. Crispim Milhano, J. G. Pedro, R. Peres, F. C. R. |
author_role |
author |
author2 |
Castro, Nuno Filipe Romão, M. Crispim Milhano, J. G. Pedro, R. Peres, F. C. R. |
author2_role |
author author author author author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Apolinário,L. Castro, Nuno Filipe Romão, M. Crispim Milhano, J. G. Pedro, R. Peres, F. C. R. |
dc.subject.por.fl_str_mv |
Heavy Ion Phenomenology Jets Ciências Naturais::Ciências Físicas Science & Technology Indústria, inovação e infraestruturas |
topic |
Heavy Ion Phenomenology Jets Ciências Naturais::Ciências Físicas Science & Technology Indústria, inovação e infraestruturas |
description |
An important aspect of the study of Quark-Gluon Plasma (QGP) in ultra-relativistic collisions of heavy ions is the ability to identify, in experimental data, a subset of the jets that were strongly modified by the interaction with the QGP. In this work, we propose studying deep learning techniques for this purpose. Samples of $Z+$jet events were simulated in vacuum and medium and used to train deep neural networks with the objective of discriminating between medium- and vacuum-like jets. Dedicated Convolutional Neural Networks, Dense Neural Networks and Recurrent Neural Networks were developed and trained, and their performance was studied. Our results show the potential of these techniques for the identification of jet quenching effects induced by the presence of the QGP. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-11-29 2021-11-29T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/1822/75048 |
url |
http://hdl.handle.net/1822/75048 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Apolinário, L., Castro, N.F., Romão, M.C. et al. Deep Learning for the classification of quenched jets. J. High Energ. Phys. 2021, 219 (2021). https://doi.org/10.1007/JHEP11(2021)219 1434-6044 1434-6052 10.1007/JHEP11(2021)219 219 (2021) https://link.springer.com/article/10.1007%2FJHEP11%282021%29219 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799133094153814016 |