Deep learning for the classification of quenched jets

Detalhes bibliográficos
Autor(a) principal: Apolinário,L.
Data de Publicação: 2021
Outros Autores: Castro, Nuno Filipe, Romão, M. Crispim, Milhano, J. G., Pedro, R., Peres, F. C. R.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/1822/75048
Resumo: An important aspect of the study of Quark-Gluon Plasma (QGP) in ultra-relativistic collisions of heavy ions is the ability to identify, in experimental data, a subset of the jets that were strongly modified by the interaction with the QGP. In this work, we propose studying deep learning techniques for this purpose. Samples of $Z+$jet events were simulated in vacuum and medium and used to train deep neural networks with the objective of discriminating between medium- and vacuum-like jets. Dedicated Convolutional Neural Networks, Dense Neural Networks and Recurrent Neural Networks were developed and trained, and their performance was studied. Our results show the potential of these techniques for the identification of jet quenching effects induced by the presence of the QGP.
id RCAP_540e4128c38f93a65364dc3c17a5a822
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/75048
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Deep learning for the classification of quenched jetsHeavy Ion PhenomenologyJetsCiências Naturais::Ciências FísicasScience & TechnologyIndústria, inovação e infraestruturasAn important aspect of the study of Quark-Gluon Plasma (QGP) in ultra-relativistic collisions of heavy ions is the ability to identify, in experimental data, a subset of the jets that were strongly modified by the interaction with the QGP. In this work, we propose studying deep learning techniques for this purpose. Samples of $Z+$jet events were simulated in vacuum and medium and used to train deep neural networks with the objective of discriminating between medium- and vacuum-like jets. Dedicated Convolutional Neural Networks, Dense Neural Networks and Recurrent Neural Networks were developed and trained, and their performance was studied. Our results show the potential of these techniques for the identification of jet quenching effects induced by the presence of the QGP.Fundação para a Ciência e a Tecnologiainfo:eu-repo/semantics/publishedVersionSpringerUniversidade do MinhoApolinário,L.Castro, Nuno FilipeRomão, M. CrispimMilhano, J. G.Pedro, R.Peres, F. C. R.2021-11-292021-11-29T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/75048engApolinário, L., Castro, N.F., Romão, M.C. et al. Deep Learning for the classification of quenched jets. J. High Energ. Phys. 2021, 219 (2021). https://doi.org/10.1007/JHEP11(2021)2191434-60441434-605210.1007/JHEP11(2021)219219 (2021)https://link.springer.com/article/10.1007%2FJHEP11%282021%29219info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:51:49Zoai:repositorium.sdum.uminho.pt:1822/75048Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:50:48.647546Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Deep learning for the classification of quenched jets
title Deep learning for the classification of quenched jets
spellingShingle Deep learning for the classification of quenched jets
Apolinário,L.
Heavy Ion Phenomenology
Jets
Ciências Naturais::Ciências Físicas
Science & Technology
Indústria, inovação e infraestruturas
title_short Deep learning for the classification of quenched jets
title_full Deep learning for the classification of quenched jets
title_fullStr Deep learning for the classification of quenched jets
title_full_unstemmed Deep learning for the classification of quenched jets
title_sort Deep learning for the classification of quenched jets
author Apolinário,L.
author_facet Apolinário,L.
Castro, Nuno Filipe
Romão, M. Crispim
Milhano, J. G.
Pedro, R.
Peres, F. C. R.
author_role author
author2 Castro, Nuno Filipe
Romão, M. Crispim
Milhano, J. G.
Pedro, R.
Peres, F. C. R.
author2_role author
author
author
author
author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Apolinário,L.
Castro, Nuno Filipe
Romão, M. Crispim
Milhano, J. G.
Pedro, R.
Peres, F. C. R.
dc.subject.por.fl_str_mv Heavy Ion Phenomenology
Jets
Ciências Naturais::Ciências Físicas
Science & Technology
Indústria, inovação e infraestruturas
topic Heavy Ion Phenomenology
Jets
Ciências Naturais::Ciências Físicas
Science & Technology
Indústria, inovação e infraestruturas
description An important aspect of the study of Quark-Gluon Plasma (QGP) in ultra-relativistic collisions of heavy ions is the ability to identify, in experimental data, a subset of the jets that were strongly modified by the interaction with the QGP. In this work, we propose studying deep learning techniques for this purpose. Samples of $Z+$jet events were simulated in vacuum and medium and used to train deep neural networks with the objective of discriminating between medium- and vacuum-like jets. Dedicated Convolutional Neural Networks, Dense Neural Networks and Recurrent Neural Networks were developed and trained, and their performance was studied. Our results show the potential of these techniques for the identification of jet quenching effects induced by the presence of the QGP.
publishDate 2021
dc.date.none.fl_str_mv 2021-11-29
2021-11-29T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1822/75048
url http://hdl.handle.net/1822/75048
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Apolinário, L., Castro, N.F., Romão, M.C. et al. Deep Learning for the classification of quenched jets. J. High Energ. Phys. 2021, 219 (2021). https://doi.org/10.1007/JHEP11(2021)219
1434-6044
1434-6052
10.1007/JHEP11(2021)219
219 (2021)
https://link.springer.com/article/10.1007%2FJHEP11%282021%29219
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799133094153814016