SDR for Physical Layer Authentication

Detalhes bibliográficos
Autor(a) principal: Faria, João Francisco Lopes
Data de Publicação: 2022
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10362/152400
Resumo: Wireless networks and devices are easy and useful solutions nowadays, regardless of the context in which they are implemented. However, it is in the broadcast nature of wireless networks that some vulnerabilities arise. To protect against these vulnerabilities, encryp- tion and authentication methods are commonly used. However, such methods come at the expense of their own complexity, requiring high enough computational power to solve, and introducing latency. To try to reduce the complexity of the conventional ways of user authentication, this work has studied mechanisms to implement reliable authentication at the physical layer, analyzing the various devices signal characteristics. To achieve this analysis, the GNU Radio platform was used to process incoming signals and extract the necessary features. Given the open source nature of GNU Radio, this provides a customiz- able and low-cost solution to signal processing and feature extraction. This research uses the GNU Radio to implement a feature extraction solution and constructs a feature vector with size 1 × 95. This thesis studies the extracted features of eleven IEEE 802.15.4 devices in regards to their separability and proposes a solution for feature reduction. The feature vectors are passed through a Random Forest and a Deep Neural Network (DNN) classifier, achieving accuracies as high as 99% for short distance communication.
id RCAP_546a142cc3375f4b1bb75f1e9f0c92f6
oai_identifier_str oai:run.unl.pt:10362/152400
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling SDR for Physical Layer AuthenticationPHYAuthenticationFingerprinting802.15.4ZigbeeSDRDomínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e InformáticaWireless networks and devices are easy and useful solutions nowadays, regardless of the context in which they are implemented. However, it is in the broadcast nature of wireless networks that some vulnerabilities arise. To protect against these vulnerabilities, encryp- tion and authentication methods are commonly used. However, such methods come at the expense of their own complexity, requiring high enough computational power to solve, and introducing latency. To try to reduce the complexity of the conventional ways of user authentication, this work has studied mechanisms to implement reliable authentication at the physical layer, analyzing the various devices signal characteristics. To achieve this analysis, the GNU Radio platform was used to process incoming signals and extract the necessary features. Given the open source nature of GNU Radio, this provides a customiz- able and low-cost solution to signal processing and feature extraction. This research uses the GNU Radio to implement a feature extraction solution and constructs a feature vector with size 1 × 95. This thesis studies the extracted features of eleven IEEE 802.15.4 devices in regards to their separability and proposes a solution for feature reduction. The feature vectors are passed through a Random Forest and a Deep Neural Network (DNN) classifier, achieving accuracies as high as 99% for short distance communication.Redes e dispositivos sem fio são implementações úteis e fáceis de realizar atualmente, independentemente do contexto em que são desenvolvidas. No entanto, é na natureza de difusão destas redes que surgem algumas vulnerabilidades. Métodos de criptografia e autenticação são usualmente utilizados para proteger contra essas vulnerabilidades. No entanto, esses métodos apresentam uma complexidade inerente, necessitando de poder computacional e introduzindo latência. Para tentar reduzir a complexidade das formas convencionais de autenticação de utilizadores das redes, esta dissertação estudou me- canismos para implementar uma autenticação fiável na camada física, analisando as ca- racterísticas dos sinais dos diversos dispositivos que utilizam a rede. Para realizar esta análise, a plataforma GNU Radio foi utilizada para processar sinais recebidos e extrair as características necessárias. Dada a natureza de código aberto do GNU Radio, é possível desenvolver uma solução customizável e de baixo custo. Esta dissertação utiliza o GNU Radio para implementar uma solução de extração de características e constrói um vetor de características de tamanho 1×95. Esta dissertação estuda as características extraídas de onze dispositivos IEEE 802.15.4 em relação à separabilidade destas e propõe uma solução para redução de características. Os vetores são passados por um classificador de Florestas Aleatórias (Random Forest) e um classificador de Redes Neurais Profundas, atingindo precisões de até 99% para comunicação a curta distância.Bernardo, LuísRUNFaria, João Francisco Lopes2023-05-04T11:44:31Z2022-112022-11-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/152400enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-05-22T18:11:10Zoai:run.unl.pt:10362/152400Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-05-22T18:11:10Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv SDR for Physical Layer Authentication
title SDR for Physical Layer Authentication
spellingShingle SDR for Physical Layer Authentication
Faria, João Francisco Lopes
PHY
Authentication
Fingerprinting
802.15.4
Zigbee
SDR
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
title_short SDR for Physical Layer Authentication
title_full SDR for Physical Layer Authentication
title_fullStr SDR for Physical Layer Authentication
title_full_unstemmed SDR for Physical Layer Authentication
title_sort SDR for Physical Layer Authentication
author Faria, João Francisco Lopes
author_facet Faria, João Francisco Lopes
author_role author
dc.contributor.none.fl_str_mv Bernardo, Luís
RUN
dc.contributor.author.fl_str_mv Faria, João Francisco Lopes
dc.subject.por.fl_str_mv PHY
Authentication
Fingerprinting
802.15.4
Zigbee
SDR
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
topic PHY
Authentication
Fingerprinting
802.15.4
Zigbee
SDR
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
description Wireless networks and devices are easy and useful solutions nowadays, regardless of the context in which they are implemented. However, it is in the broadcast nature of wireless networks that some vulnerabilities arise. To protect against these vulnerabilities, encryp- tion and authentication methods are commonly used. However, such methods come at the expense of their own complexity, requiring high enough computational power to solve, and introducing latency. To try to reduce the complexity of the conventional ways of user authentication, this work has studied mechanisms to implement reliable authentication at the physical layer, analyzing the various devices signal characteristics. To achieve this analysis, the GNU Radio platform was used to process incoming signals and extract the necessary features. Given the open source nature of GNU Radio, this provides a customiz- able and low-cost solution to signal processing and feature extraction. This research uses the GNU Radio to implement a feature extraction solution and constructs a feature vector with size 1 × 95. This thesis studies the extracted features of eleven IEEE 802.15.4 devices in regards to their separability and proposes a solution for feature reduction. The feature vectors are passed through a Random Forest and a Deep Neural Network (DNN) classifier, achieving accuracies as high as 99% for short distance communication.
publishDate 2022
dc.date.none.fl_str_mv 2022-11
2022-11-01T00:00:00Z
2023-05-04T11:44:31Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/152400
url http://hdl.handle.net/10362/152400
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv mluisa.alvim@gmail.com
_version_ 1817545931532271616