Equilibrium and stability properties of detonation waves in the hydrodynamic limit of a kinetic model
Autor(a) principal: | |
---|---|
Data de Publicação: | 2015 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/1822/35358 |
Resumo: | A shock wave structure problem, like the one which can be formulated for the planar detonation wave, is analyzed here for a binary mixture of ideal gases undergoing the symmetric reaction A1+A1=A2+A2 . The problem is studied at the hydrodynamic Euler limit of a kinetic model of the reactive Boltzmann equation. The chemical rate law is deduced in this frame with a second-order reaction rate, in a hemical regime such that the gas flow is not far away from the chemical equilibrium. The caloric and the thermal equations of state for the specific internal energy and temperature are employed to close the system of balance laws. With respect to other approaches known in the kinetic literature for detonation problems with a reversible reaction, this paper aims to improve some aspects of the wave solution. Within the mathematical analysis of the detonation model, the equation of the equilibrium Hugoniot curve of the final states is explicitly derived for the first time and used to define the correct location of the equilibrium Chapman–Jouguet point in the Hugoniot diagram. The parametric space is widened to investigate the response of the detonation solution to the activation energy of the chemical reaction. Finally, the mathematical formulation of the linear stability problem is given for the wave detonation structure via a normal-mode approach, when bidimensional disturbances perturb the steady solution. The stability equations with their boundary conditions and the radiation condition of the considered model are explicitly derived for small transversal deviations of the shock wave location. The paper shows how a second-order chemical kinetics description, derived at the microscopic level, and an analytic deduction of the equilibrium Hugoniot curve, lead to an accurate picture of the steady detonation with reversible reaction, as well as to a proper bidimensional linear stability analysis. |
id |
RCAP_547b7f51824a68256fb13c1e35b422d3 |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/35358 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Equilibrium and stability properties of detonation waves in the hydrodynamic limit of a kinetic modelchemically reactive flowsdetonation waveshyperbolic systemshydrodynamic stabilityCiências Naturais::MatemáticasScience & TechnologyA shock wave structure problem, like the one which can be formulated for the planar detonation wave, is analyzed here for a binary mixture of ideal gases undergoing the symmetric reaction A1+A1=A2+A2 . The problem is studied at the hydrodynamic Euler limit of a kinetic model of the reactive Boltzmann equation. The chemical rate law is deduced in this frame with a second-order reaction rate, in a hemical regime such that the gas flow is not far away from the chemical equilibrium. The caloric and the thermal equations of state for the specific internal energy and temperature are employed to close the system of balance laws. With respect to other approaches known in the kinetic literature for detonation problems with a reversible reaction, this paper aims to improve some aspects of the wave solution. Within the mathematical analysis of the detonation model, the equation of the equilibrium Hugoniot curve of the final states is explicitly derived for the first time and used to define the correct location of the equilibrium Chapman–Jouguet point in the Hugoniot diagram. The parametric space is widened to investigate the response of the detonation solution to the activation energy of the chemical reaction. Finally, the mathematical formulation of the linear stability problem is given for the wave detonation structure via a normal-mode approach, when bidimensional disturbances perturb the steady solution. The stability equations with their boundary conditions and the radiation condition of the considered model are explicitly derived for small transversal deviations of the shock wave location. The paper shows how a second-order chemical kinetics description, derived at the microscopic level, and an analytic deduction of the equilibrium Hugoniot curve, lead to an accurate picture of the steady detonation with reversible reaction, as well as to a proper bidimensional linear stability analysis.Brazilian Research Council (CNPq), by Italian Research Council GNFM-INdAM, and by the Research Centre of Mathematics of the University of Minho with the Portuguese Funds of FCT, project PEstOE/MAT/UI0013/2014.IOP PublishingUniversidade do MinhoMarques Jr., WilsonSoares, A. J.Bianchi, Miriam PandolfiKremer, Gilberto Medeiros2015-062015-06-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/35358eng1751-811310.1088/1751-8113/48/23/235501http://iopscience.iop.org/1751-8121/48/23/235501/pdf/1751-8121_48_23_235501.pdfinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-05-11T06:32:29Zoai:repositorium.sdum.uminho.pt:1822/35358Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-05-11T06:32:29Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Equilibrium and stability properties of detonation waves in the hydrodynamic limit of a kinetic model |
title |
Equilibrium and stability properties of detonation waves in the hydrodynamic limit of a kinetic model |
spellingShingle |
Equilibrium and stability properties of detonation waves in the hydrodynamic limit of a kinetic model Marques Jr., Wilson chemically reactive flows detonation waves hyperbolic systems hydrodynamic stability Ciências Naturais::Matemáticas Science & Technology |
title_short |
Equilibrium and stability properties of detonation waves in the hydrodynamic limit of a kinetic model |
title_full |
Equilibrium and stability properties of detonation waves in the hydrodynamic limit of a kinetic model |
title_fullStr |
Equilibrium and stability properties of detonation waves in the hydrodynamic limit of a kinetic model |
title_full_unstemmed |
Equilibrium and stability properties of detonation waves in the hydrodynamic limit of a kinetic model |
title_sort |
Equilibrium and stability properties of detonation waves in the hydrodynamic limit of a kinetic model |
author |
Marques Jr., Wilson |
author_facet |
Marques Jr., Wilson Soares, A. J. Bianchi, Miriam Pandolfi Kremer, Gilberto Medeiros |
author_role |
author |
author2 |
Soares, A. J. Bianchi, Miriam Pandolfi Kremer, Gilberto Medeiros |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Marques Jr., Wilson Soares, A. J. Bianchi, Miriam Pandolfi Kremer, Gilberto Medeiros |
dc.subject.por.fl_str_mv |
chemically reactive flows detonation waves hyperbolic systems hydrodynamic stability Ciências Naturais::Matemáticas Science & Technology |
topic |
chemically reactive flows detonation waves hyperbolic systems hydrodynamic stability Ciências Naturais::Matemáticas Science & Technology |
description |
A shock wave structure problem, like the one which can be formulated for the planar detonation wave, is analyzed here for a binary mixture of ideal gases undergoing the symmetric reaction A1+A1=A2+A2 . The problem is studied at the hydrodynamic Euler limit of a kinetic model of the reactive Boltzmann equation. The chemical rate law is deduced in this frame with a second-order reaction rate, in a hemical regime such that the gas flow is not far away from the chemical equilibrium. The caloric and the thermal equations of state for the specific internal energy and temperature are employed to close the system of balance laws. With respect to other approaches known in the kinetic literature for detonation problems with a reversible reaction, this paper aims to improve some aspects of the wave solution. Within the mathematical analysis of the detonation model, the equation of the equilibrium Hugoniot curve of the final states is explicitly derived for the first time and used to define the correct location of the equilibrium Chapman–Jouguet point in the Hugoniot diagram. The parametric space is widened to investigate the response of the detonation solution to the activation energy of the chemical reaction. Finally, the mathematical formulation of the linear stability problem is given for the wave detonation structure via a normal-mode approach, when bidimensional disturbances perturb the steady solution. The stability equations with their boundary conditions and the radiation condition of the considered model are explicitly derived for small transversal deviations of the shock wave location. The paper shows how a second-order chemical kinetics description, derived at the microscopic level, and an analytic deduction of the equilibrium Hugoniot curve, lead to an accurate picture of the steady detonation with reversible reaction, as well as to a proper bidimensional linear stability analysis. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-06 2015-06-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/1822/35358 |
url |
http://hdl.handle.net/1822/35358 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1751-8113 10.1088/1751-8113/48/23/235501 http://iopscience.iop.org/1751-8121/48/23/235501/pdf/1751-8121_48_23_235501.pdf |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
IOP Publishing |
publisher.none.fl_str_mv |
IOP Publishing |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
mluisa.alvim@gmail.com |
_version_ |
1817545007586869248 |