Biochemical and physiological insights into bacterial cytochrome c peroxidases from Escherichia coli and Neisseria gonorrhoeae

Detalhes bibliográficos
Autor(a) principal: Nóbrega, Cláudia Raquel da Silva
Data de Publicação: 2017
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10362/24218
Resumo: Bacteria display an array of enzymes to detoxify reactive oxygen species that cause cell damage and death, such as the bacterial cytochrome c peroxidase (BCCP) that reduces H2O2 to water in the periplasm. The BCCPs studied up-to-date are soluble dihemic enzymes from non-pathogenic bacteria. This thesis focus on the trihemic BCCP from Escherichia coli (YhjA), and the dihemic BCCP from the obligate human pathogen Neisseria gonorrhoeae (NgBCCP). These two enzymes are membrane anchored thus, soluble recombinant proteins of their conserved globular domains were produced, purified and characterized biochemically and spectroscopically. Recombinant NgBCCP, a 38 kDa protein, forms a homodimer in the presence of calcium ions. It contains a high-potential E heme (+310 mV, pH 7.5) and a low-potential P heme (-190 mV/-300 mV, pH 7.5), the active site, with a unique high-spin EPR signal at low temperatures in the mixed-valence active form. NgBCCP has catalytic activity with ABTS2- (synthetic electron donor) and a Lipid-modified Azurin (LAz) as electron donors (low KM values 4.0 and 0.4 μM H2O2, respectively) which was dependent on reductive activation and calcium ions, and optimum at physiological pH (7.0) and temperature (37 ºC). LAz, identified as NgBCCP physiological electron donor, was capable of activating the enzyme. The NgBCCP/LAz electron transfer complex has a low binding affinity (micromolar range), and the interaction is dynamic and of a hydrophobic nature according to NMR, docking and preliminary calorimetry studies. The peroxidase activity was inhibited by exogenous ligands bound at the active site, such as azide, cyanide and imidazole, as demonstrated by spectroscopic, kinetic and structural analysis. The structure of NgBCCP was determined for the mixed-valenced and azide-inhibited form, and a catalytic mechanism for BCCPs was proposed based on the structural analysis of NgBCCP active site. The recombinant YhjA, a 50 kDa monomer, has a C-terminal domain homologous to dihemic BCCPs and a N-terminal (NT) domain. This domain was characterized for the first time, demonstrating that NT heme is His63/Met125 coordinated. The reduction potentials of P, NT and E hemes were determined: –170 mV, +133 mV and +210 mV, at pH 7.5, respectively. YhjA has quinol peroxidase activity in vitro (millimolar range KM values) using hydroquinone and menadiol (menaquinol analogue), as electron donors. Calcium ions were needed for maximum activity but not reductive activation, as P heme is always high-spin penta-coordinated. This property allowed to detect the formation of an intermediate radical species upon incubation with H2O2. Real Time PCR data showed that YhjA was expressed under anaerobic conditions, which agrees with the use of menaquinol in those conditions. Hence it was suggested a role in H2O2 detoxification when transitioning from anaerobic to aerobic environments.
id RCAP_54b77418413f22cf26e972fa2d18c1bc
oai_identifier_str oai:run.unl.pt:10362/24218
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Biochemical and physiological insights into bacterial cytochrome c peroxidases from Escherichia coli and Neisseria gonorrhoeaeBacterial peroxidasesOxidative stress responseNeisseria gonorrhoeaeEscherichia coliElectron transfer complexCatalytic mechanismDomínio/Área Científica::Engenharia e Tecnologia::Engenharia QuímicaBacteria display an array of enzymes to detoxify reactive oxygen species that cause cell damage and death, such as the bacterial cytochrome c peroxidase (BCCP) that reduces H2O2 to water in the periplasm. The BCCPs studied up-to-date are soluble dihemic enzymes from non-pathogenic bacteria. This thesis focus on the trihemic BCCP from Escherichia coli (YhjA), and the dihemic BCCP from the obligate human pathogen Neisseria gonorrhoeae (NgBCCP). These two enzymes are membrane anchored thus, soluble recombinant proteins of their conserved globular domains were produced, purified and characterized biochemically and spectroscopically. Recombinant NgBCCP, a 38 kDa protein, forms a homodimer in the presence of calcium ions. It contains a high-potential E heme (+310 mV, pH 7.5) and a low-potential P heme (-190 mV/-300 mV, pH 7.5), the active site, with a unique high-spin EPR signal at low temperatures in the mixed-valence active form. NgBCCP has catalytic activity with ABTS2- (synthetic electron donor) and a Lipid-modified Azurin (LAz) as electron donors (low KM values 4.0 and 0.4 μM H2O2, respectively) which was dependent on reductive activation and calcium ions, and optimum at physiological pH (7.0) and temperature (37 ºC). LAz, identified as NgBCCP physiological electron donor, was capable of activating the enzyme. The NgBCCP/LAz electron transfer complex has a low binding affinity (micromolar range), and the interaction is dynamic and of a hydrophobic nature according to NMR, docking and preliminary calorimetry studies. The peroxidase activity was inhibited by exogenous ligands bound at the active site, such as azide, cyanide and imidazole, as demonstrated by spectroscopic, kinetic and structural analysis. The structure of NgBCCP was determined for the mixed-valenced and azide-inhibited form, and a catalytic mechanism for BCCPs was proposed based on the structural analysis of NgBCCP active site. The recombinant YhjA, a 50 kDa monomer, has a C-terminal domain homologous to dihemic BCCPs and a N-terminal (NT) domain. This domain was characterized for the first time, demonstrating that NT heme is His63/Met125 coordinated. The reduction potentials of P, NT and E hemes were determined: –170 mV, +133 mV and +210 mV, at pH 7.5, respectively. YhjA has quinol peroxidase activity in vitro (millimolar range KM values) using hydroquinone and menadiol (menaquinol analogue), as electron donors. Calcium ions were needed for maximum activity but not reductive activation, as P heme is always high-spin penta-coordinated. This property allowed to detect the formation of an intermediate radical species upon incubation with H2O2. Real Time PCR data showed that YhjA was expressed under anaerobic conditions, which agrees with the use of menaquinol in those conditions. Hence it was suggested a role in H2O2 detoxification when transitioning from anaerobic to aerobic environments.Pauleta, SofiaDevreese, BartRUNNóbrega, Cláudia Raquel da Silva2018-10-01T00:30:25Z2017-092017-102017-09-01T00:00:00Zdoctoral thesisinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/10362/24218TID:101577460enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-05-22T17:28:13Zoai:run.unl.pt:10362/24218Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-05-22T17:28:13Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Biochemical and physiological insights into bacterial cytochrome c peroxidases from Escherichia coli and Neisseria gonorrhoeae
title Biochemical and physiological insights into bacterial cytochrome c peroxidases from Escherichia coli and Neisseria gonorrhoeae
spellingShingle Biochemical and physiological insights into bacterial cytochrome c peroxidases from Escherichia coli and Neisseria gonorrhoeae
Nóbrega, Cláudia Raquel da Silva
Bacterial peroxidases
Oxidative stress response
Neisseria gonorrhoeae
Escherichia coli
Electron transfer complex
Catalytic mechanism
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Química
title_short Biochemical and physiological insights into bacterial cytochrome c peroxidases from Escherichia coli and Neisseria gonorrhoeae
title_full Biochemical and physiological insights into bacterial cytochrome c peroxidases from Escherichia coli and Neisseria gonorrhoeae
title_fullStr Biochemical and physiological insights into bacterial cytochrome c peroxidases from Escherichia coli and Neisseria gonorrhoeae
title_full_unstemmed Biochemical and physiological insights into bacterial cytochrome c peroxidases from Escherichia coli and Neisseria gonorrhoeae
title_sort Biochemical and physiological insights into bacterial cytochrome c peroxidases from Escherichia coli and Neisseria gonorrhoeae
author Nóbrega, Cláudia Raquel da Silva
author_facet Nóbrega, Cláudia Raquel da Silva
author_role author
dc.contributor.none.fl_str_mv Pauleta, Sofia
Devreese, Bart
RUN
dc.contributor.author.fl_str_mv Nóbrega, Cláudia Raquel da Silva
dc.subject.por.fl_str_mv Bacterial peroxidases
Oxidative stress response
Neisseria gonorrhoeae
Escherichia coli
Electron transfer complex
Catalytic mechanism
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Química
topic Bacterial peroxidases
Oxidative stress response
Neisseria gonorrhoeae
Escherichia coli
Electron transfer complex
Catalytic mechanism
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Química
description Bacteria display an array of enzymes to detoxify reactive oxygen species that cause cell damage and death, such as the bacterial cytochrome c peroxidase (BCCP) that reduces H2O2 to water in the periplasm. The BCCPs studied up-to-date are soluble dihemic enzymes from non-pathogenic bacteria. This thesis focus on the trihemic BCCP from Escherichia coli (YhjA), and the dihemic BCCP from the obligate human pathogen Neisseria gonorrhoeae (NgBCCP). These two enzymes are membrane anchored thus, soluble recombinant proteins of their conserved globular domains were produced, purified and characterized biochemically and spectroscopically. Recombinant NgBCCP, a 38 kDa protein, forms a homodimer in the presence of calcium ions. It contains a high-potential E heme (+310 mV, pH 7.5) and a low-potential P heme (-190 mV/-300 mV, pH 7.5), the active site, with a unique high-spin EPR signal at low temperatures in the mixed-valence active form. NgBCCP has catalytic activity with ABTS2- (synthetic electron donor) and a Lipid-modified Azurin (LAz) as electron donors (low KM values 4.0 and 0.4 μM H2O2, respectively) which was dependent on reductive activation and calcium ions, and optimum at physiological pH (7.0) and temperature (37 ºC). LAz, identified as NgBCCP physiological electron donor, was capable of activating the enzyme. The NgBCCP/LAz electron transfer complex has a low binding affinity (micromolar range), and the interaction is dynamic and of a hydrophobic nature according to NMR, docking and preliminary calorimetry studies. The peroxidase activity was inhibited by exogenous ligands bound at the active site, such as azide, cyanide and imidazole, as demonstrated by spectroscopic, kinetic and structural analysis. The structure of NgBCCP was determined for the mixed-valenced and azide-inhibited form, and a catalytic mechanism for BCCPs was proposed based on the structural analysis of NgBCCP active site. The recombinant YhjA, a 50 kDa monomer, has a C-terminal domain homologous to dihemic BCCPs and a N-terminal (NT) domain. This domain was characterized for the first time, demonstrating that NT heme is His63/Met125 coordinated. The reduction potentials of P, NT and E hemes were determined: –170 mV, +133 mV and +210 mV, at pH 7.5, respectively. YhjA has quinol peroxidase activity in vitro (millimolar range KM values) using hydroquinone and menadiol (menaquinol analogue), as electron donors. Calcium ions were needed for maximum activity but not reductive activation, as P heme is always high-spin penta-coordinated. This property allowed to detect the formation of an intermediate radical species upon incubation with H2O2. Real Time PCR data showed that YhjA was expressed under anaerobic conditions, which agrees with the use of menaquinol in those conditions. Hence it was suggested a role in H2O2 detoxification when transitioning from anaerobic to aerobic environments.
publishDate 2017
dc.date.none.fl_str_mv 2017-09
2017-10
2017-09-01T00:00:00Z
2018-10-01T00:30:25Z
dc.type.driver.fl_str_mv doctoral thesis
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/24218
TID:101577460
url http://hdl.handle.net/10362/24218
identifier_str_mv TID:101577460
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv mluisa.alvim@gmail.com
_version_ 1817545605436669952