Surface properties of distinct nanofibrillated celluloses assessed by inverse gas chromatography
Autor(a) principal: | |
---|---|
Data de Publicação: | 2014 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10316/28015 https://doi.org/GAMELAS, J.A.F.; PEDROSA, J.; LOURENÇO, A.F.; FERREIRA, P.J. - Surface properties of distinct nanofibrillated celluloses assessed by inverse gas chromatography.[Em linha]. "Colloids and Surfaces A : Physicochemical and Engineering Aspects". ISSN: 0927-7757. 469 (2015), 36-41. Disponivel na WWW: http://dx.doi.org/10.1016/j.colsurfa.2014.12.058 https://doi.org/10.1016/j.colsurfa.2014.12.058 |
Resumo: | The adhesion and surface properties of nanocelluloses are an important issue to consider when using this material for composites production, in food packaging or coatings, as well as for determining the influence of added functional groups. In the present work, the surface properties of two nanofibrillated celluloses obtained by mild 2,2,6,6-tetramethylpiperidine-1- oxyl radical (TEMPO)-mediated oxidation with distinct mechanical treatment intensity in a homogenizer (5 and 15 passes), and one nanofibrillated cellulose obtained by enzymatic process, were thoroughly assessed by inverse chromatography, at infinite dilution conditions. The dispersion component of the surface energy ( s d) was 42-46 mJ m-2 at 40 ºC for the TEMPO nanofibres and 52 mJ m-2 for the enzymatic nanocellulose. It was confirmed, based on the determination of the specific components of the works of adhesion and enthalpies of adsorption with polar probes, that the surfaces of the materials have a more Lewis acidic than Lewis basic character. Regarding TEMPO nanofibres, a slight increase of Lewis acidity/basicity ratio seemed to occur for the more nanofibrillated material (15-passes). Higher specific interactions with polar probes were found for enzymatic nanocellulose. The higher values of s d and specific interactions observed for the enzymatic nanocellulose could partly be due to the higher crystallinity of this sample. On the other hand, the increase of the acidity/basicity ratio (as well as of the s d value) for the 15-passes vs. 5-passes TEMPO nanofibres was attributed to a higher exposition of the hydroxyl groups of cellulose at the surface of the former material. |
id |
RCAP_54d4aa484aa9d84e1c1f7907f87f7615 |
---|---|
oai_identifier_str |
oai:estudogeral.uc.pt:10316/28015 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Surface properties of distinct nanofibrillated celluloses assessed by inverse gas chromatographyCompositesInverse gas chromatographyNanocelluloseSurface energyLewis acid-base characterThe adhesion and surface properties of nanocelluloses are an important issue to consider when using this material for composites production, in food packaging or coatings, as well as for determining the influence of added functional groups. In the present work, the surface properties of two nanofibrillated celluloses obtained by mild 2,2,6,6-tetramethylpiperidine-1- oxyl radical (TEMPO)-mediated oxidation with distinct mechanical treatment intensity in a homogenizer (5 and 15 passes), and one nanofibrillated cellulose obtained by enzymatic process, were thoroughly assessed by inverse chromatography, at infinite dilution conditions. The dispersion component of the surface energy ( s d) was 42-46 mJ m-2 at 40 ºC for the TEMPO nanofibres and 52 mJ m-2 for the enzymatic nanocellulose. It was confirmed, based on the determination of the specific components of the works of adhesion and enthalpies of adsorption with polar probes, that the surfaces of the materials have a more Lewis acidic than Lewis basic character. Regarding TEMPO nanofibres, a slight increase of Lewis acidity/basicity ratio seemed to occur for the more nanofibrillated material (15-passes). Higher specific interactions with polar probes were found for enzymatic nanocellulose. The higher values of s d and specific interactions observed for the enzymatic nanocellulose could partly be due to the higher crystallinity of this sample. On the other hand, the increase of the acidity/basicity ratio (as well as of the s d value) for the 15-passes vs. 5-passes TEMPO nanofibres was attributed to a higher exposition of the hydroxyl groups of cellulose at the surface of the former material.Elsevier2014-12-30info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10316/28015https://doi.org/GAMELAS, J.A.F.; PEDROSA, J.; LOURENÇO, A.F.; FERREIRA, P.J. - Surface properties of distinct nanofibrillated celluloses assessed by inverse gas chromatography.[Em linha]. "Colloids and Surfaces A : Physicochemical and Engineering Aspects". ISSN: 0927-7757. 469 (2015), 36-41. Disponivel na WWW: http://dx.doi.org/10.1016/j.colsurfa.2014.12.058http://hdl.handle.net/10316/28015https://doi.org/10.1016/j.colsurfa.2014.12.058eng0927-7757http://dx.doi.org/10.1016/j.colsurfa.2014.12.058Gamelas, José A. F.Pedrosa, JorgeLourenço, Ana F.Ferreira, Paulo J.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2020-11-06T16:48:54Zoai:estudogeral.uc.pt:10316/28015Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:59:19.280314Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Surface properties of distinct nanofibrillated celluloses assessed by inverse gas chromatography |
title |
Surface properties of distinct nanofibrillated celluloses assessed by inverse gas chromatography |
spellingShingle |
Surface properties of distinct nanofibrillated celluloses assessed by inverse gas chromatography Gamelas, José A. F. Composites Inverse gas chromatography Nanocellulose Surface energy Lewis acid-base character |
title_short |
Surface properties of distinct nanofibrillated celluloses assessed by inverse gas chromatography |
title_full |
Surface properties of distinct nanofibrillated celluloses assessed by inverse gas chromatography |
title_fullStr |
Surface properties of distinct nanofibrillated celluloses assessed by inverse gas chromatography |
title_full_unstemmed |
Surface properties of distinct nanofibrillated celluloses assessed by inverse gas chromatography |
title_sort |
Surface properties of distinct nanofibrillated celluloses assessed by inverse gas chromatography |
author |
Gamelas, José A. F. |
author_facet |
Gamelas, José A. F. Pedrosa, Jorge Lourenço, Ana F. Ferreira, Paulo J. |
author_role |
author |
author2 |
Pedrosa, Jorge Lourenço, Ana F. Ferreira, Paulo J. |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Gamelas, José A. F. Pedrosa, Jorge Lourenço, Ana F. Ferreira, Paulo J. |
dc.subject.por.fl_str_mv |
Composites Inverse gas chromatography Nanocellulose Surface energy Lewis acid-base character |
topic |
Composites Inverse gas chromatography Nanocellulose Surface energy Lewis acid-base character |
description |
The adhesion and surface properties of nanocelluloses are an important issue to consider when using this material for composites production, in food packaging or coatings, as well as for determining the influence of added functional groups. In the present work, the surface properties of two nanofibrillated celluloses obtained by mild 2,2,6,6-tetramethylpiperidine-1- oxyl radical (TEMPO)-mediated oxidation with distinct mechanical treatment intensity in a homogenizer (5 and 15 passes), and one nanofibrillated cellulose obtained by enzymatic process, were thoroughly assessed by inverse chromatography, at infinite dilution conditions. The dispersion component of the surface energy ( s d) was 42-46 mJ m-2 at 40 ºC for the TEMPO nanofibres and 52 mJ m-2 for the enzymatic nanocellulose. It was confirmed, based on the determination of the specific components of the works of adhesion and enthalpies of adsorption with polar probes, that the surfaces of the materials have a more Lewis acidic than Lewis basic character. Regarding TEMPO nanofibres, a slight increase of Lewis acidity/basicity ratio seemed to occur for the more nanofibrillated material (15-passes). Higher specific interactions with polar probes were found for enzymatic nanocellulose. The higher values of s d and specific interactions observed for the enzymatic nanocellulose could partly be due to the higher crystallinity of this sample. On the other hand, the increase of the acidity/basicity ratio (as well as of the s d value) for the 15-passes vs. 5-passes TEMPO nanofibres was attributed to a higher exposition of the hydroxyl groups of cellulose at the surface of the former material. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-12-30 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10316/28015 https://doi.org/GAMELAS, J.A.F.; PEDROSA, J.; LOURENÇO, A.F.; FERREIRA, P.J. - Surface properties of distinct nanofibrillated celluloses assessed by inverse gas chromatography.[Em linha]. "Colloids and Surfaces A : Physicochemical and Engineering Aspects". ISSN: 0927-7757. 469 (2015), 36-41. Disponivel na WWW: http://dx.doi.org/10.1016/j.colsurfa.2014.12.058 http://hdl.handle.net/10316/28015 https://doi.org/10.1016/j.colsurfa.2014.12.058 |
url |
http://hdl.handle.net/10316/28015 https://doi.org/GAMELAS, J.A.F.; PEDROSA, J.; LOURENÇO, A.F.; FERREIRA, P.J. - Surface properties of distinct nanofibrillated celluloses assessed by inverse gas chromatography.[Em linha]. "Colloids and Surfaces A : Physicochemical and Engineering Aspects". ISSN: 0927-7757. 469 (2015), 36-41. Disponivel na WWW: http://dx.doi.org/10.1016/j.colsurfa.2014.12.058 https://doi.org/10.1016/j.colsurfa.2014.12.058 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0927-7757 http://dx.doi.org/10.1016/j.colsurfa.2014.12.058 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799133884174041088 |