Silencing of FRO1 gene affects iron homeostasis and nutrient balance in tomato plants
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Outros Autores: | , , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.1/19971 |
Resumo: | BackgroundIron chlorosis is an abiotic stress of worldwide importance affecting several agronomic crops. It is important to understand how plants maintain nutrient homeostasis under Fe deficiency and recovery. AimsWe used the virus-induced gene silencing (VIGS) method to elucidate the role of the FRO1 gene in tomato plants and identify the impact on regulation of the root ferric-chelate reductase (FCR) activity and nutritional homeostasis. MethodsTomato plantlets cv. "Cherry" were transferred into half-strength Hoagland's nutrient solution containing 0.5 & mu;M of Fe (Fe0.5). In phase I, two treatments were established: control (Fe0.5) plants and VIGS-0.5 plants corresponding to plants with the FRO1 gene silenced. In phase II, plants from Fe0.5 and VIGS-0.5 were transferred to new nutrient solution and then grown for a further 14 days under 0 and 10 & mu;M of Fe (as 0.5 & mu;M would not be enough for the larger plants during phase II). Therefore, four treatments were imposed: Fe0, Fe10, VIGS-0, and VIGS-10. ResultsVIGS-0.5 plants had significantly lower chlorophyll (Chl) and root FCR activity compared to the respective non-silenced plants and retained more Cu and Zn in the roots at the expense of stems (Cu) or young leaves (Zn). Iron concentration in roots and stems decreased in FRO1 gene-silenced plants, compared to control plants, but the allocation to different organs was similar in both treatments. ConclusionsThere was a partial recovery of leaf Chl in the VIGS-10 plants and a higher concentration of Fe in all organs. In contrast, the allocation of Cu to roots decreased in the VIGS-10 plants. |
id |
RCAP_54d8a66003c62bbd5e1d4c21a2320f87 |
---|---|
oai_identifier_str |
oai:sapientia.ualg.pt:10400.1/19971 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Silencing of FRO1 gene affects iron homeostasis and nutrient balance in tomato plantsFerric-chelate reductaseIron deficiencyIron homeostasisNutrientsVirus-induced gene silencingBackgroundIron chlorosis is an abiotic stress of worldwide importance affecting several agronomic crops. It is important to understand how plants maintain nutrient homeostasis under Fe deficiency and recovery. AimsWe used the virus-induced gene silencing (VIGS) method to elucidate the role of the FRO1 gene in tomato plants and identify the impact on regulation of the root ferric-chelate reductase (FCR) activity and nutritional homeostasis. MethodsTomato plantlets cv. "Cherry" were transferred into half-strength Hoagland's nutrient solution containing 0.5 & mu;M of Fe (Fe0.5). In phase I, two treatments were established: control (Fe0.5) plants and VIGS-0.5 plants corresponding to plants with the FRO1 gene silenced. In phase II, plants from Fe0.5 and VIGS-0.5 were transferred to new nutrient solution and then grown for a further 14 days under 0 and 10 & mu;M of Fe (as 0.5 & mu;M would not be enough for the larger plants during phase II). Therefore, four treatments were imposed: Fe0, Fe10, VIGS-0, and VIGS-10. ResultsVIGS-0.5 plants had significantly lower chlorophyll (Chl) and root FCR activity compared to the respective non-silenced plants and retained more Cu and Zn in the roots at the expense of stems (Cu) or young leaves (Zn). Iron concentration in roots and stems decreased in FRO1 gene-silenced plants, compared to control plants, but the allocation to different organs was similar in both treatments. ConclusionsThere was a partial recovery of leaf Chl in the VIGS-10 plants and a higher concentration of Fe in all organs. In contrast, the allocation of Cu to roots decreased in the VIGS-10 plants.WileySapientiaGama, FlorindaSaavedra, TeresaDandlen, SusanaGarcía‐Caparrós, Pedrode Varennes, AmarilisNolasco, GustavoCorreia, Pedro JoséPestana, Maribela2023-09-13T09:52:53Z20232023-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.1/19971eng1436-873010.1002/jpln.202300071info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-09-20T02:00:36Zoai:sapientia.ualg.pt:10400.1/19971Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:29:43.471478Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Silencing of FRO1 gene affects iron homeostasis and nutrient balance in tomato plants |
title |
Silencing of FRO1 gene affects iron homeostasis and nutrient balance in tomato plants |
spellingShingle |
Silencing of FRO1 gene affects iron homeostasis and nutrient balance in tomato plants Gama, Florinda Ferric-chelate reductase Iron deficiency Iron homeostasis Nutrients Virus-induced gene silencing |
title_short |
Silencing of FRO1 gene affects iron homeostasis and nutrient balance in tomato plants |
title_full |
Silencing of FRO1 gene affects iron homeostasis and nutrient balance in tomato plants |
title_fullStr |
Silencing of FRO1 gene affects iron homeostasis and nutrient balance in tomato plants |
title_full_unstemmed |
Silencing of FRO1 gene affects iron homeostasis and nutrient balance in tomato plants |
title_sort |
Silencing of FRO1 gene affects iron homeostasis and nutrient balance in tomato plants |
author |
Gama, Florinda |
author_facet |
Gama, Florinda Saavedra, Teresa Dandlen, Susana García‐Caparrós, Pedro de Varennes, Amarilis Nolasco, Gustavo Correia, Pedro José Pestana, Maribela |
author_role |
author |
author2 |
Saavedra, Teresa Dandlen, Susana García‐Caparrós, Pedro de Varennes, Amarilis Nolasco, Gustavo Correia, Pedro José Pestana, Maribela |
author2_role |
author author author author author author author |
dc.contributor.none.fl_str_mv |
Sapientia |
dc.contributor.author.fl_str_mv |
Gama, Florinda Saavedra, Teresa Dandlen, Susana García‐Caparrós, Pedro de Varennes, Amarilis Nolasco, Gustavo Correia, Pedro José Pestana, Maribela |
dc.subject.por.fl_str_mv |
Ferric-chelate reductase Iron deficiency Iron homeostasis Nutrients Virus-induced gene silencing |
topic |
Ferric-chelate reductase Iron deficiency Iron homeostasis Nutrients Virus-induced gene silencing |
description |
BackgroundIron chlorosis is an abiotic stress of worldwide importance affecting several agronomic crops. It is important to understand how plants maintain nutrient homeostasis under Fe deficiency and recovery. AimsWe used the virus-induced gene silencing (VIGS) method to elucidate the role of the FRO1 gene in tomato plants and identify the impact on regulation of the root ferric-chelate reductase (FCR) activity and nutritional homeostasis. MethodsTomato plantlets cv. "Cherry" were transferred into half-strength Hoagland's nutrient solution containing 0.5 & mu;M of Fe (Fe0.5). In phase I, two treatments were established: control (Fe0.5) plants and VIGS-0.5 plants corresponding to plants with the FRO1 gene silenced. In phase II, plants from Fe0.5 and VIGS-0.5 were transferred to new nutrient solution and then grown for a further 14 days under 0 and 10 & mu;M of Fe (as 0.5 & mu;M would not be enough for the larger plants during phase II). Therefore, four treatments were imposed: Fe0, Fe10, VIGS-0, and VIGS-10. ResultsVIGS-0.5 plants had significantly lower chlorophyll (Chl) and root FCR activity compared to the respective non-silenced plants and retained more Cu and Zn in the roots at the expense of stems (Cu) or young leaves (Zn). Iron concentration in roots and stems decreased in FRO1 gene-silenced plants, compared to control plants, but the allocation to different organs was similar in both treatments. ConclusionsThere was a partial recovery of leaf Chl in the VIGS-10 plants and a higher concentration of Fe in all organs. In contrast, the allocation of Cu to roots decreased in the VIGS-10 plants. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-09-13T09:52:53Z 2023 2023-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.1/19971 |
url |
http://hdl.handle.net/10400.1/19971 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1436-8730 10.1002/jpln.202300071 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Wiley |
publisher.none.fl_str_mv |
Wiley |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799133565381771264 |