Resveratrol against Arcobacter butzleri and Arcobacter cryaerophilus: Activity and effect on cellular functions

Detalhes bibliográficos
Autor(a) principal: Ferreira, Susana
Data de Publicação: 2014
Outros Autores: Silva, Filomena, Queiroz, João, Oleastro, Mónica, Domingues, F.C.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.6/8894
Resumo: The frequent isolation of Arcobacter butzleri and Arcobacter cryaerophilus from food samples makes it imperative to search for potential compounds able to inhibit the development of these bacteria. Taking this into consideration, this study focuses on the antimicrobial activity of resveratrol and its mechanism of action against A. butzleri and A. cryaerophilus. The activity of resveratrol was assessed by a microdilution method and time-kill curves. Resveratrol effect on cellular functions was assessed by flow cytometry evaluating intracellular DNA content and metabolic activity. Ethidium bromide (EtBr) accumulation in the presence of resveratrol was also evaluated, as well as the susceptibility to resveratrol in the presence of phenylalanine-arginine β-naphthylamide (PAβN). Scanning electron microscopy (SEM) was used to further evaluate cell damage caused by resveratrol. Resveratrol presented MIC values of 100 and 50μg/mL to A. butzleri and A. cryaerophilus, respectively. Based on the time-kill curves, resveratrol exhibited bactericidal activity, leading to a ≥3log10CFU/mL reduction of initial inoculums, for A. butzleri exponential phase cells incubated for 6h with 1× MIC or with 2× MIC after 24h for stationary phase cells. For A. cryaerophilus cells in exponential growth phase, 99.9% killing was achieved after 24h incubation with 2× MIC, whereas, for stationary phase cells, bactericidal activity was only detected after incubation with 4× MIC. Incubation with resveratrol led to a decrease in both intracellular DNA content and metabolic activity. An increase in the accumulation of EtBr was observed in the presence of resveratrol, and the efflux pump inhibitor PAβN reduced the MIC of resveratrol. SEM analysis revealed disintegration of A. butzleri cells treated with resveratrol, whereas no morphological alteration was observed for A. cryaerophilus cells. Resveratrol has a good anti-Arcobacter activity, and the results obtained suggest that this compound could act through several different mechanisms in the inhibition of this microorganism. The results encourage the use of this compound for the development of potential strategies to control Arcobacter in food products.
id RCAP_552d2ec7a59fb13ef037f82a21739e0a
oai_identifier_str oai:ubibliorum.ubi.pt:10400.6/8894
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Resveratrol against Arcobacter butzleri and Arcobacter cryaerophilus: Activity and effect on cellular functionsArcobacterResveratrolAntimicrobial activityFlow cytometryEfflux pump activityThe frequent isolation of Arcobacter butzleri and Arcobacter cryaerophilus from food samples makes it imperative to search for potential compounds able to inhibit the development of these bacteria. Taking this into consideration, this study focuses on the antimicrobial activity of resveratrol and its mechanism of action against A. butzleri and A. cryaerophilus. The activity of resveratrol was assessed by a microdilution method and time-kill curves. Resveratrol effect on cellular functions was assessed by flow cytometry evaluating intracellular DNA content and metabolic activity. Ethidium bromide (EtBr) accumulation in the presence of resveratrol was also evaluated, as well as the susceptibility to resveratrol in the presence of phenylalanine-arginine β-naphthylamide (PAβN). Scanning electron microscopy (SEM) was used to further evaluate cell damage caused by resveratrol. Resveratrol presented MIC values of 100 and 50μg/mL to A. butzleri and A. cryaerophilus, respectively. Based on the time-kill curves, resveratrol exhibited bactericidal activity, leading to a ≥3log10CFU/mL reduction of initial inoculums, for A. butzleri exponential phase cells incubated for 6h with 1× MIC or with 2× MIC after 24h for stationary phase cells. For A. cryaerophilus cells in exponential growth phase, 99.9% killing was achieved after 24h incubation with 2× MIC, whereas, for stationary phase cells, bactericidal activity was only detected after incubation with 4× MIC. Incubation with resveratrol led to a decrease in both intracellular DNA content and metabolic activity. An increase in the accumulation of EtBr was observed in the presence of resveratrol, and the efflux pump inhibitor PAβN reduced the MIC of resveratrol. SEM analysis revealed disintegration of A. butzleri cells treated with resveratrol, whereas no morphological alteration was observed for A. cryaerophilus cells. Resveratrol has a good anti-Arcobacter activity, and the results obtained suggest that this compound could act through several different mechanisms in the inhibition of this microorganism. The results encourage the use of this compound for the development of potential strategies to control Arcobacter in food products.SAU/UI0709/2011ElsevieruBibliorumFerreira, SusanaSilva, FilomenaQueiroz, JoãoOleastro, MónicaDomingues, F.C.2020-01-29T14:36:30Z20142014-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.6/8894eng10.1016/j.ijfoodmicro.2014.04.004metadata only accessinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-12-15T09:49:17Zoai:ubibliorum.ubi.pt:10400.6/8894Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T00:49:10.202810Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Resveratrol against Arcobacter butzleri and Arcobacter cryaerophilus: Activity and effect on cellular functions
title Resveratrol against Arcobacter butzleri and Arcobacter cryaerophilus: Activity and effect on cellular functions
spellingShingle Resveratrol against Arcobacter butzleri and Arcobacter cryaerophilus: Activity and effect on cellular functions
Ferreira, Susana
Arcobacter
Resveratrol
Antimicrobial activity
Flow cytometry
Efflux pump activity
title_short Resveratrol against Arcobacter butzleri and Arcobacter cryaerophilus: Activity and effect on cellular functions
title_full Resveratrol against Arcobacter butzleri and Arcobacter cryaerophilus: Activity and effect on cellular functions
title_fullStr Resveratrol against Arcobacter butzleri and Arcobacter cryaerophilus: Activity and effect on cellular functions
title_full_unstemmed Resveratrol against Arcobacter butzleri and Arcobacter cryaerophilus: Activity and effect on cellular functions
title_sort Resveratrol against Arcobacter butzleri and Arcobacter cryaerophilus: Activity and effect on cellular functions
author Ferreira, Susana
author_facet Ferreira, Susana
Silva, Filomena
Queiroz, João
Oleastro, Mónica
Domingues, F.C.
author_role author
author2 Silva, Filomena
Queiroz, João
Oleastro, Mónica
Domingues, F.C.
author2_role author
author
author
author
dc.contributor.none.fl_str_mv uBibliorum
dc.contributor.author.fl_str_mv Ferreira, Susana
Silva, Filomena
Queiroz, João
Oleastro, Mónica
Domingues, F.C.
dc.subject.por.fl_str_mv Arcobacter
Resveratrol
Antimicrobial activity
Flow cytometry
Efflux pump activity
topic Arcobacter
Resveratrol
Antimicrobial activity
Flow cytometry
Efflux pump activity
description The frequent isolation of Arcobacter butzleri and Arcobacter cryaerophilus from food samples makes it imperative to search for potential compounds able to inhibit the development of these bacteria. Taking this into consideration, this study focuses on the antimicrobial activity of resveratrol and its mechanism of action against A. butzleri and A. cryaerophilus. The activity of resveratrol was assessed by a microdilution method and time-kill curves. Resveratrol effect on cellular functions was assessed by flow cytometry evaluating intracellular DNA content and metabolic activity. Ethidium bromide (EtBr) accumulation in the presence of resveratrol was also evaluated, as well as the susceptibility to resveratrol in the presence of phenylalanine-arginine β-naphthylamide (PAβN). Scanning electron microscopy (SEM) was used to further evaluate cell damage caused by resveratrol. Resveratrol presented MIC values of 100 and 50μg/mL to A. butzleri and A. cryaerophilus, respectively. Based on the time-kill curves, resveratrol exhibited bactericidal activity, leading to a ≥3log10CFU/mL reduction of initial inoculums, for A. butzleri exponential phase cells incubated for 6h with 1× MIC or with 2× MIC after 24h for stationary phase cells. For A. cryaerophilus cells in exponential growth phase, 99.9% killing was achieved after 24h incubation with 2× MIC, whereas, for stationary phase cells, bactericidal activity was only detected after incubation with 4× MIC. Incubation with resveratrol led to a decrease in both intracellular DNA content and metabolic activity. An increase in the accumulation of EtBr was observed in the presence of resveratrol, and the efflux pump inhibitor PAβN reduced the MIC of resveratrol. SEM analysis revealed disintegration of A. butzleri cells treated with resveratrol, whereas no morphological alteration was observed for A. cryaerophilus cells. Resveratrol has a good anti-Arcobacter activity, and the results obtained suggest that this compound could act through several different mechanisms in the inhibition of this microorganism. The results encourage the use of this compound for the development of potential strategies to control Arcobacter in food products.
publishDate 2014
dc.date.none.fl_str_mv 2014
2014-01-01T00:00:00Z
2020-01-29T14:36:30Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.6/8894
url http://hdl.handle.net/10400.6/8894
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1016/j.ijfoodmicro.2014.04.004
dc.rights.driver.fl_str_mv metadata only access
info:eu-repo/semantics/openAccess
rights_invalid_str_mv metadata only access
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799136384544407552