Using eye-tracking data to study models of attention and decision-making
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/139504 |
Resumo: | Decisions arise from a conjunction of factors, including perception, attention and learning processes, and individual characteristics. The strong link between visual stimuli and attentional mechanisms makes eye-tracking a powerful tool to provide a glimpse of what may occur at the brain level. Here, we aimed to explore the role of eye movements in value-based decision-making and to consider key substrates of the reinforcement learning theory. We analyzed eye data from two rhesus monkeys while performing a two-stage Markov decision task, known to elicit different learning strategies. By analyzing thousands of trials across dozens of sessions, we examined how gaze patterns influence behavior at a level of detail still not achievable in humans. Descriptive results of relevant ocular metrics, such as the number of saccades, meet the existing literature on binary choice, with mostly 1 or 2 saccades per decision stage. Results support a random first gaze, with no bias for the choice made or the choice of greatest value to the subject. On the other hand, the subject’s last look is a strong indicator of the chosen option. A Drift Diffusion Model approach established the baseline for gaze allocation and choice behavior association. Using Machine Learning, eye movement metrics alone showed considerable accuracy in predicting the upcoming choice. Adding the temporal factor via Recursive Neural Networks for forecasting proved to be beneficial. We conclude that visual perception and attention play a significant role in decisionmaking and are related to one’s learning processes. Our findings also highlight the benefits of gaze analysis for a thorough understanding of choice behavior. |
id |
RCAP_55cbc4251ac05fbcd338a070fa4c6edd |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/139504 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Using eye-tracking data to study models of attention and decision-makingEye-TrackingLearningAttentionDecision-MakingMachine LearningDomínio/Área Científica::Engenharia e Tecnologia::Outras Engenharias e TecnologiasDecisions arise from a conjunction of factors, including perception, attention and learning processes, and individual characteristics. The strong link between visual stimuli and attentional mechanisms makes eye-tracking a powerful tool to provide a glimpse of what may occur at the brain level. Here, we aimed to explore the role of eye movements in value-based decision-making and to consider key substrates of the reinforcement learning theory. We analyzed eye data from two rhesus monkeys while performing a two-stage Markov decision task, known to elicit different learning strategies. By analyzing thousands of trials across dozens of sessions, we examined how gaze patterns influence behavior at a level of detail still not achievable in humans. Descriptive results of relevant ocular metrics, such as the number of saccades, meet the existing literature on binary choice, with mostly 1 or 2 saccades per decision stage. Results support a random first gaze, with no bias for the choice made or the choice of greatest value to the subject. On the other hand, the subject’s last look is a strong indicator of the chosen option. A Drift Diffusion Model approach established the baseline for gaze allocation and choice behavior association. Using Machine Learning, eye movement metrics alone showed considerable accuracy in predicting the upcoming choice. Adding the temporal factor via Recursive Neural Networks for forecasting proved to be beneficial. We conclude that visual perception and attention play a significant role in decisionmaking and are related to one’s learning processes. Our findings also highlight the benefits of gaze analysis for a thorough understanding of choice behavior.Uma decisão surge da conjunção de fatores como a perceção, atenção, processos de aprendizagem e características do indivíduo. A forte ligação entre estímulos visuais e mecanismos de atenção torna a monitorização ocular uma ferramenta poderosa para proporcionar um vislumbre do que pode ocorrer ao nível cerebral. Aqui, o nosso objetivo é explorar o papel dos movimentos oculares na tomada de decisões baseadas em valor, considerando uma base de Reinforcement Learning. Foram analisados dados oculares de dois primatas, obtidos enquanto estes realizavam uma tarefa de decisão de Markov em duas fases, conhecida por suscitar diferentes estratégias de aprendizagem. Analisando milhares de ensaios em dezenas de sessões, foi explorado como certos padrões da visão influenciam o comportamento, a um nível de detalhe ainda não alcançável em humanos. Os resultados descritivos de métricas oculares relevantes, tais como o número de sacadas, satisfazem a literatura existente sobre a escolha binária, com maioritariamente 1 ou 2 sacadas por fase de decisão. Os resultados apoiam um primeiro olhar aleatório, sem enviesamento para a escolha feita ou a escolha de maior valor para o sujeito. Por outro lado, o último olhar do sujeito é um forte indicador da opção escolhida. Foi realizada uma abordagem incorporativa de um Drift Diffusion Model, usada para estabelecer uma linha de base para a alocação do olhar e a sua associação à escolha. Através de Machine Learning, as métricas dos movimentos oculares dos olhos revelaram-se capazes de sustentar uma performance considerável na classificação das escolhas. A adição do fator temporal na previsão de decisões futuras, através de Redes Neurais Recursivas, revelou também um potencial notável. Conclui-se que a perceção visual e a atenção desempenham um papel significativo numa decisão e que estão relacionadas com os processos de aprendizagem de um indivíduo. Esta dissertação realça também os benefícios da análise do olhar para uma compreensão completa do processo de tomada de decisão.Gamboa, HugoMiranda, BrunoRUNMadeira, Pedro Diogo dos Santos2022-06-06T13:32:59Z2022-022022-02-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/139504enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:16:47Zoai:run.unl.pt:10362/139504Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:49:26.841075Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Using eye-tracking data to study models of attention and decision-making |
title |
Using eye-tracking data to study models of attention and decision-making |
spellingShingle |
Using eye-tracking data to study models of attention and decision-making Madeira, Pedro Diogo dos Santos Eye-Tracking Learning Attention Decision-Making Machine Learning Domínio/Área Científica::Engenharia e Tecnologia::Outras Engenharias e Tecnologias |
title_short |
Using eye-tracking data to study models of attention and decision-making |
title_full |
Using eye-tracking data to study models of attention and decision-making |
title_fullStr |
Using eye-tracking data to study models of attention and decision-making |
title_full_unstemmed |
Using eye-tracking data to study models of attention and decision-making |
title_sort |
Using eye-tracking data to study models of attention and decision-making |
author |
Madeira, Pedro Diogo dos Santos |
author_facet |
Madeira, Pedro Diogo dos Santos |
author_role |
author |
dc.contributor.none.fl_str_mv |
Gamboa, Hugo Miranda, Bruno RUN |
dc.contributor.author.fl_str_mv |
Madeira, Pedro Diogo dos Santos |
dc.subject.por.fl_str_mv |
Eye-Tracking Learning Attention Decision-Making Machine Learning Domínio/Área Científica::Engenharia e Tecnologia::Outras Engenharias e Tecnologias |
topic |
Eye-Tracking Learning Attention Decision-Making Machine Learning Domínio/Área Científica::Engenharia e Tecnologia::Outras Engenharias e Tecnologias |
description |
Decisions arise from a conjunction of factors, including perception, attention and learning processes, and individual characteristics. The strong link between visual stimuli and attentional mechanisms makes eye-tracking a powerful tool to provide a glimpse of what may occur at the brain level. Here, we aimed to explore the role of eye movements in value-based decision-making and to consider key substrates of the reinforcement learning theory. We analyzed eye data from two rhesus monkeys while performing a two-stage Markov decision task, known to elicit different learning strategies. By analyzing thousands of trials across dozens of sessions, we examined how gaze patterns influence behavior at a level of detail still not achievable in humans. Descriptive results of relevant ocular metrics, such as the number of saccades, meet the existing literature on binary choice, with mostly 1 or 2 saccades per decision stage. Results support a random first gaze, with no bias for the choice made or the choice of greatest value to the subject. On the other hand, the subject’s last look is a strong indicator of the chosen option. A Drift Diffusion Model approach established the baseline for gaze allocation and choice behavior association. Using Machine Learning, eye movement metrics alone showed considerable accuracy in predicting the upcoming choice. Adding the temporal factor via Recursive Neural Networks for forecasting proved to be beneficial. We conclude that visual perception and attention play a significant role in decisionmaking and are related to one’s learning processes. Our findings also highlight the benefits of gaze analysis for a thorough understanding of choice behavior. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-06-06T13:32:59Z 2022-02 2022-02-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/139504 |
url |
http://hdl.handle.net/10362/139504 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799138093412909056 |