Replenishment support decision model for a try­-before-you-­buy retail fashion e­commerce

Detalhes bibliográficos
Autor(a) principal: Canessa, Andrea
Data de Publicação: 2023
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.14/41154
Resumo: A try before you buy business model is a type of sales strategy in which customers are allowed to test a product before making a purchase. As the try before you buy online business model is a topic on which there is limited public scholarly research, the purpose of this research is to provide an initial approach to the subject by presenting a tool to support the replenishment strategy of Curve Catch, a fashion e­commerce retailer. A simulation engine characterized by two main components has been built: replenishment and a demand generator. Model development is built on artificially generated data based on real data of Curve Catch. Based on the literature inherent to inventory management and through the use of simulation ­optimization, the model provides managerial guidance on how to manage r,Q policy in a system where most goods shipped to customers are returned. The tool highlights the need to optimize the use of reorder point and economic order quantity to achieve better business performance. This is because conventional formulas, if not adjusted to the specific setting, perform sub optimally. The model also provides insights into the levels of lost sales due to out stocking and the quality of service provided to customers. Studying the relationships among these three KPIs provides insight into what trade­offs are relevant in planning a continuous review replenishment strategy.
id RCAP_56069557d2ab628afdc005ab9043361b
oai_identifier_str oai:repositorio.ucp.pt:10400.14/41154
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Replenishment support decision model for a try­-before-you-­buy retail fashion e­commerceDomínio/Área Científica::Ciências Sociais::Economia e GestãoA try before you buy business model is a type of sales strategy in which customers are allowed to test a product before making a purchase. As the try before you buy online business model is a topic on which there is limited public scholarly research, the purpose of this research is to provide an initial approach to the subject by presenting a tool to support the replenishment strategy of Curve Catch, a fashion e­commerce retailer. A simulation engine characterized by two main components has been built: replenishment and a demand generator. Model development is built on artificially generated data based on real data of Curve Catch. Based on the literature inherent to inventory management and through the use of simulation ­optimization, the model provides managerial guidance on how to manage r,Q policy in a system where most goods shipped to customers are returned. The tool highlights the need to optimize the use of reorder point and economic order quantity to achieve better business performance. This is because conventional formulas, if not adjusted to the specific setting, perform sub optimally. The model also provides insights into the levels of lost sales due to out stocking and the quality of service provided to customers. Studying the relationships among these three KPIs provides insight into what trade­offs are relevant in planning a continuous review replenishment strategy.Um modelo de negócio de "experimentar antes de comprar" é um tipo de estratégia de vendas onde os clientes têm a possibilidade de testar um produto antes de fazer a sua compra. Uma vez que este modelo de negócio online é um tópico sobre o qual não existe nenhuma pesquisa académica pública, o objetivo desta estudo é fornecer uma abordagem inicial ao assunto, fornecendo uma ferramenta para apoiar a estratégia de reposição da Curve Catch, um e ­ commerce de moda. Foi construído um motor de simulação caracterizado por dois componentes principais: reposição e gerador de procura. O desenvolvimento do modelo baseia ­se em dados gerados artificialmente com base em dados reais da Curve Catch. Com base na literatura inerente à gestão de stocks e através do uso de simulação­otimização, o modelo fornece orientação empresarial sobre como gerir a política r, Q em um sistema onde a maioria dos produtos enviados para os clientes é devolvido. A ferramenta destaca a necessidade de otimizar o uso do ponto de reordenação (reorder point) e da quantidade de encomenda económica (economic order quantity), para alcançar um melhor desempenho do negócio. Isso ocorre dado que as fórmulas convencionais, se não forem ajustadas para o ambiente específico, serão desempenhadas de maneira subaproveitada. Para além disso, o modelo fornece insights sobre os níveis de vendas perdidas devido ao esgotamento e a qualidade do aten dimento ao cliente. O estudo das relações entre essas três métricas­chave fornece insights sobre quais trade­offs são relevantes no planeamento de uma estratégia de reposição de revisão contínua."Gijsbrechts, JorenVeritati - Repositório Institucional da Universidade Católica PortuguesaCanessa, Andrea2023-05-17T13:17:26Z2023-02-032023-012023-02-03T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10400.14/41154TID:203279034enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-12T17:46:44Zoai:repositorio.ucp.pt:10400.14/41154Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T18:33:49.610440Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Replenishment support decision model for a try­-before-you-­buy retail fashion e­commerce
title Replenishment support decision model for a try­-before-you-­buy retail fashion e­commerce
spellingShingle Replenishment support decision model for a try­-before-you-­buy retail fashion e­commerce
Canessa, Andrea
Domínio/Área Científica::Ciências Sociais::Economia e Gestão
title_short Replenishment support decision model for a try­-before-you-­buy retail fashion e­commerce
title_full Replenishment support decision model for a try­-before-you-­buy retail fashion e­commerce
title_fullStr Replenishment support decision model for a try­-before-you-­buy retail fashion e­commerce
title_full_unstemmed Replenishment support decision model for a try­-before-you-­buy retail fashion e­commerce
title_sort Replenishment support decision model for a try­-before-you-­buy retail fashion e­commerce
author Canessa, Andrea
author_facet Canessa, Andrea
author_role author
dc.contributor.none.fl_str_mv Gijsbrechts, Joren
Veritati - Repositório Institucional da Universidade Católica Portuguesa
dc.contributor.author.fl_str_mv Canessa, Andrea
dc.subject.por.fl_str_mv Domínio/Área Científica::Ciências Sociais::Economia e Gestão
topic Domínio/Área Científica::Ciências Sociais::Economia e Gestão
description A try before you buy business model is a type of sales strategy in which customers are allowed to test a product before making a purchase. As the try before you buy online business model is a topic on which there is limited public scholarly research, the purpose of this research is to provide an initial approach to the subject by presenting a tool to support the replenishment strategy of Curve Catch, a fashion e­commerce retailer. A simulation engine characterized by two main components has been built: replenishment and a demand generator. Model development is built on artificially generated data based on real data of Curve Catch. Based on the literature inherent to inventory management and through the use of simulation ­optimization, the model provides managerial guidance on how to manage r,Q policy in a system where most goods shipped to customers are returned. The tool highlights the need to optimize the use of reorder point and economic order quantity to achieve better business performance. This is because conventional formulas, if not adjusted to the specific setting, perform sub optimally. The model also provides insights into the levels of lost sales due to out stocking and the quality of service provided to customers. Studying the relationships among these three KPIs provides insight into what trade­offs are relevant in planning a continuous review replenishment strategy.
publishDate 2023
dc.date.none.fl_str_mv 2023-05-17T13:17:26Z
2023-02-03
2023-01
2023-02-03T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.14/41154
TID:203279034
url http://hdl.handle.net/10400.14/41154
identifier_str_mv TID:203279034
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799132064516145152