Replenishment support decision model for a try-before-you-buy retail fashion ecommerce
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.14/41154 |
Resumo: | A try before you buy business model is a type of sales strategy in which customers are allowed to test a product before making a purchase. As the try before you buy online business model is a topic on which there is limited public scholarly research, the purpose of this research is to provide an initial approach to the subject by presenting a tool to support the replenishment strategy of Curve Catch, a fashion ecommerce retailer. A simulation engine characterized by two main components has been built: replenishment and a demand generator. Model development is built on artificially generated data based on real data of Curve Catch. Based on the literature inherent to inventory management and through the use of simulation optimization, the model provides managerial guidance on how to manage r,Q policy in a system where most goods shipped to customers are returned. The tool highlights the need to optimize the use of reorder point and economic order quantity to achieve better business performance. This is because conventional formulas, if not adjusted to the specific setting, perform sub optimally. The model also provides insights into the levels of lost sales due to out stocking and the quality of service provided to customers. Studying the relationships among these three KPIs provides insight into what tradeoffs are relevant in planning a continuous review replenishment strategy. |
id |
RCAP_56069557d2ab628afdc005ab9043361b |
---|---|
oai_identifier_str |
oai:repositorio.ucp.pt:10400.14/41154 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Replenishment support decision model for a try-before-you-buy retail fashion ecommerceDomínio/Área Científica::Ciências Sociais::Economia e GestãoA try before you buy business model is a type of sales strategy in which customers are allowed to test a product before making a purchase. As the try before you buy online business model is a topic on which there is limited public scholarly research, the purpose of this research is to provide an initial approach to the subject by presenting a tool to support the replenishment strategy of Curve Catch, a fashion ecommerce retailer. A simulation engine characterized by two main components has been built: replenishment and a demand generator. Model development is built on artificially generated data based on real data of Curve Catch. Based on the literature inherent to inventory management and through the use of simulation optimization, the model provides managerial guidance on how to manage r,Q policy in a system where most goods shipped to customers are returned. The tool highlights the need to optimize the use of reorder point and economic order quantity to achieve better business performance. This is because conventional formulas, if not adjusted to the specific setting, perform sub optimally. The model also provides insights into the levels of lost sales due to out stocking and the quality of service provided to customers. Studying the relationships among these three KPIs provides insight into what tradeoffs are relevant in planning a continuous review replenishment strategy.Um modelo de negócio de "experimentar antes de comprar" é um tipo de estratégia de vendas onde os clientes têm a possibilidade de testar um produto antes de fazer a sua compra. Uma vez que este modelo de negócio online é um tópico sobre o qual não existe nenhuma pesquisa académica pública, o objetivo desta estudo é fornecer uma abordagem inicial ao assunto, fornecendo uma ferramenta para apoiar a estratégia de reposição da Curve Catch, um e commerce de moda. Foi construído um motor de simulação caracterizado por dois componentes principais: reposição e gerador de procura. O desenvolvimento do modelo baseia se em dados gerados artificialmente com base em dados reais da Curve Catch. Com base na literatura inerente à gestão de stocks e através do uso de simulaçãootimização, o modelo fornece orientação empresarial sobre como gerir a política r, Q em um sistema onde a maioria dos produtos enviados para os clientes é devolvido. A ferramenta destaca a necessidade de otimizar o uso do ponto de reordenação (reorder point) e da quantidade de encomenda económica (economic order quantity), para alcançar um melhor desempenho do negócio. Isso ocorre dado que as fórmulas convencionais, se não forem ajustadas para o ambiente específico, serão desempenhadas de maneira subaproveitada. Para além disso, o modelo fornece insights sobre os níveis de vendas perdidas devido ao esgotamento e a qualidade do aten dimento ao cliente. O estudo das relações entre essas três métricaschave fornece insights sobre quais tradeoffs são relevantes no planeamento de uma estratégia de reposição de revisão contínua."Gijsbrechts, JorenVeritati - Repositório Institucional da Universidade Católica PortuguesaCanessa, Andrea2023-05-17T13:17:26Z2023-02-032023-012023-02-03T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10400.14/41154TID:203279034enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-12T17:46:44Zoai:repositorio.ucp.pt:10400.14/41154Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T18:33:49.610440Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Replenishment support decision model for a try-before-you-buy retail fashion ecommerce |
title |
Replenishment support decision model for a try-before-you-buy retail fashion ecommerce |
spellingShingle |
Replenishment support decision model for a try-before-you-buy retail fashion ecommerce Canessa, Andrea Domínio/Área Científica::Ciências Sociais::Economia e Gestão |
title_short |
Replenishment support decision model for a try-before-you-buy retail fashion ecommerce |
title_full |
Replenishment support decision model for a try-before-you-buy retail fashion ecommerce |
title_fullStr |
Replenishment support decision model for a try-before-you-buy retail fashion ecommerce |
title_full_unstemmed |
Replenishment support decision model for a try-before-you-buy retail fashion ecommerce |
title_sort |
Replenishment support decision model for a try-before-you-buy retail fashion ecommerce |
author |
Canessa, Andrea |
author_facet |
Canessa, Andrea |
author_role |
author |
dc.contributor.none.fl_str_mv |
Gijsbrechts, Joren Veritati - Repositório Institucional da Universidade Católica Portuguesa |
dc.contributor.author.fl_str_mv |
Canessa, Andrea |
dc.subject.por.fl_str_mv |
Domínio/Área Científica::Ciências Sociais::Economia e Gestão |
topic |
Domínio/Área Científica::Ciências Sociais::Economia e Gestão |
description |
A try before you buy business model is a type of sales strategy in which customers are allowed to test a product before making a purchase. As the try before you buy online business model is a topic on which there is limited public scholarly research, the purpose of this research is to provide an initial approach to the subject by presenting a tool to support the replenishment strategy of Curve Catch, a fashion ecommerce retailer. A simulation engine characterized by two main components has been built: replenishment and a demand generator. Model development is built on artificially generated data based on real data of Curve Catch. Based on the literature inherent to inventory management and through the use of simulation optimization, the model provides managerial guidance on how to manage r,Q policy in a system where most goods shipped to customers are returned. The tool highlights the need to optimize the use of reorder point and economic order quantity to achieve better business performance. This is because conventional formulas, if not adjusted to the specific setting, perform sub optimally. The model also provides insights into the levels of lost sales due to out stocking and the quality of service provided to customers. Studying the relationships among these three KPIs provides insight into what tradeoffs are relevant in planning a continuous review replenishment strategy. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-05-17T13:17:26Z 2023-02-03 2023-01 2023-02-03T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.14/41154 TID:203279034 |
url |
http://hdl.handle.net/10400.14/41154 |
identifier_str_mv |
TID:203279034 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799132064516145152 |