AutoOC: A Python module for automated multi-objective One-Class Classification
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | https://hdl.handle.net/1822/87713 |
Resumo: | AutoOC is an open-source Python module to efficiently automate the selection and hyperparameter tuning of quality OCC (One-Class Classification) learners. By using a GE (Grammatical Evolution) approach, AutoOC searches for five base learners, namely IF (Isolation Forest), LOF (Local Outlier Factor), OC-SVM (One-Class SVM), AE (Autoencoder), and VAE (Variational Autoencoder). The module provides a multi-objective search, where predictive performance and computational efficiency are simultaneously optimized. By providing a simple set of functions, AutoOC allows the user to easily generate OCC models for a dataset, being well-suited for anomaly detection tasks, where most of the data is composed of normal records. |
id |
RCAP_560737a11aa0db61150a410cba8c3fe7 |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/87713 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
AutoOC: A Python module for automated multi-objective One-Class ClassificationAutomated machine learningDeep autoencodersGrammatical EvolutionMulti-objective optimizationOne-Class ClassificationPythonCiências Naturais::Ciências da Computação e da InformaçãoAutoOC is an open-source Python module to efficiently automate the selection and hyperparameter tuning of quality OCC (One-Class Classification) learners. By using a GE (Grammatical Evolution) approach, AutoOC searches for five base learners, namely IF (Isolation Forest), LOF (Local Outlier Factor), OC-SVM (One-Class SVM), AE (Autoencoder), and VAE (Variational Autoencoder). The module provides a multi-objective search, where predictive performance and computational efficiency are simultaneously optimized. By providing a simple set of functions, AutoOC allows the user to easily generate OCC models for a dataset, being well-suited for anomaly detection tasks, where most of the data is composed of normal records.- (undefined)ElsevierUniversidade do MinhoFerreira, LuísCortez, Paulo20232023-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/1822/87713engFerreira, L., & Cortez, P. (2023, November). AutoOC: A Python module for automated multi-objective One-Class Classification. Software Impacts. Elsevier BV. http://doi.org/10.1016/j.simpa.2023.10059010.1016/j.simpa.2023.100590https://www.softwareimpacts.com/article/S2665-9638(23)00127-6/fulltextinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-01-06T01:27:55Zoai:repositorium.sdum.uminho.pt:1822/87713Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T01:30:21.125675Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
AutoOC: A Python module for automated multi-objective One-Class Classification |
title |
AutoOC: A Python module for automated multi-objective One-Class Classification |
spellingShingle |
AutoOC: A Python module for automated multi-objective One-Class Classification Ferreira, Luís Automated machine learning Deep autoencoders Grammatical Evolution Multi-objective optimization One-Class Classification Python Ciências Naturais::Ciências da Computação e da Informação |
title_short |
AutoOC: A Python module for automated multi-objective One-Class Classification |
title_full |
AutoOC: A Python module for automated multi-objective One-Class Classification |
title_fullStr |
AutoOC: A Python module for automated multi-objective One-Class Classification |
title_full_unstemmed |
AutoOC: A Python module for automated multi-objective One-Class Classification |
title_sort |
AutoOC: A Python module for automated multi-objective One-Class Classification |
author |
Ferreira, Luís |
author_facet |
Ferreira, Luís Cortez, Paulo |
author_role |
author |
author2 |
Cortez, Paulo |
author2_role |
author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Ferreira, Luís Cortez, Paulo |
dc.subject.por.fl_str_mv |
Automated machine learning Deep autoencoders Grammatical Evolution Multi-objective optimization One-Class Classification Python Ciências Naturais::Ciências da Computação e da Informação |
topic |
Automated machine learning Deep autoencoders Grammatical Evolution Multi-objective optimization One-Class Classification Python Ciências Naturais::Ciências da Computação e da Informação |
description |
AutoOC is an open-source Python module to efficiently automate the selection and hyperparameter tuning of quality OCC (One-Class Classification) learners. By using a GE (Grammatical Evolution) approach, AutoOC searches for five base learners, namely IF (Isolation Forest), LOF (Local Outlier Factor), OC-SVM (One-Class SVM), AE (Autoencoder), and VAE (Variational Autoencoder). The module provides a multi-objective search, where predictive performance and computational efficiency are simultaneously optimized. By providing a simple set of functions, AutoOC allows the user to easily generate OCC models for a dataset, being well-suited for anomaly detection tasks, where most of the data is composed of normal records. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023 2023-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/1822/87713 |
url |
https://hdl.handle.net/1822/87713 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Ferreira, L., & Cortez, P. (2023, November). AutoOC: A Python module for automated multi-objective One-Class Classification. Software Impacts. Elsevier BV. http://doi.org/10.1016/j.simpa.2023.100590 10.1016/j.simpa.2023.100590 https://www.softwareimpacts.com/article/S2665-9638(23)00127-6/fulltext |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799136785421303808 |