A factor augmented vector autoregressive model and a stacked de-noising auto-encoders forecast combination to predict the price of oil
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/73196 |
Resumo: | The following dissertation aims to show the benefits of a forecast combination between an econometric and a deep learning approach. On one side, a Factor Augmented Vector Autoregressive Model (FAVAR) with naming variables identification following Stock and Watson (2016)1; on the other side, a Stacked De-noising Auto-Encoder with Bagging (SDAE-B) following Zhao, Li and Yu (2017)2 are implemented. From January 2010 to September 2018 Two-hundred-eighty-one monthly series are used to predict the price of the West Texas Intermediate (WTI). The model performance is analysed by Root Mean Squared Error (RMSE), Mean Absolute Percentage Error (MAPE) and Directional Accuracy (DA). The combination benefits from both SDAE-B’s high accuracy and FAVAR’s interpretation features through impulse response functions (IRFs) and forecast error variance decomposition (FEVD). |
id |
RCAP_562423deb109bfd3a59796bf8e6a475d |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/73196 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
A factor augmented vector autoregressive model and a stacked de-noising auto-encoders forecast combination to predict the price of oilOil industryFAVARSDAE-B implementationDomínio/Área Científica::Ciências Sociais::Economia e GestãoThe following dissertation aims to show the benefits of a forecast combination between an econometric and a deep learning approach. On one side, a Factor Augmented Vector Autoregressive Model (FAVAR) with naming variables identification following Stock and Watson (2016)1; on the other side, a Stacked De-noising Auto-Encoder with Bagging (SDAE-B) following Zhao, Li and Yu (2017)2 are implemented. From January 2010 to September 2018 Two-hundred-eighty-one monthly series are used to predict the price of the West Texas Intermediate (WTI). The model performance is analysed by Root Mean Squared Error (RMSE), Mean Absolute Percentage Error (MAPE) and Directional Accuracy (DA). The combination benefits from both SDAE-B’s high accuracy and FAVAR’s interpretation features through impulse response functions (IRFs) and forecast error variance decomposition (FEVD).Francesco, FrancoPereira, Pedro VallsRUNParravicini, Giovanni2020-06-30T00:30:48Z2019-01-242019-01-24T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/73196TID:202225682enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T04:33:54Zoai:run.unl.pt:10362/73196Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:35:17.987475Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
A factor augmented vector autoregressive model and a stacked de-noising auto-encoders forecast combination to predict the price of oil |
title |
A factor augmented vector autoregressive model and a stacked de-noising auto-encoders forecast combination to predict the price of oil |
spellingShingle |
A factor augmented vector autoregressive model and a stacked de-noising auto-encoders forecast combination to predict the price of oil Parravicini, Giovanni Oil industry FAVAR SDAE-B implementation Domínio/Área Científica::Ciências Sociais::Economia e Gestão |
title_short |
A factor augmented vector autoregressive model and a stacked de-noising auto-encoders forecast combination to predict the price of oil |
title_full |
A factor augmented vector autoregressive model and a stacked de-noising auto-encoders forecast combination to predict the price of oil |
title_fullStr |
A factor augmented vector autoregressive model and a stacked de-noising auto-encoders forecast combination to predict the price of oil |
title_full_unstemmed |
A factor augmented vector autoregressive model and a stacked de-noising auto-encoders forecast combination to predict the price of oil |
title_sort |
A factor augmented vector autoregressive model and a stacked de-noising auto-encoders forecast combination to predict the price of oil |
author |
Parravicini, Giovanni |
author_facet |
Parravicini, Giovanni |
author_role |
author |
dc.contributor.none.fl_str_mv |
Francesco, Franco Pereira, Pedro Valls RUN |
dc.contributor.author.fl_str_mv |
Parravicini, Giovanni |
dc.subject.por.fl_str_mv |
Oil industry FAVAR SDAE-B implementation Domínio/Área Científica::Ciências Sociais::Economia e Gestão |
topic |
Oil industry FAVAR SDAE-B implementation Domínio/Área Científica::Ciências Sociais::Economia e Gestão |
description |
The following dissertation aims to show the benefits of a forecast combination between an econometric and a deep learning approach. On one side, a Factor Augmented Vector Autoregressive Model (FAVAR) with naming variables identification following Stock and Watson (2016)1; on the other side, a Stacked De-noising Auto-Encoder with Bagging (SDAE-B) following Zhao, Li and Yu (2017)2 are implemented. From January 2010 to September 2018 Two-hundred-eighty-one monthly series are used to predict the price of the West Texas Intermediate (WTI). The model performance is analysed by Root Mean Squared Error (RMSE), Mean Absolute Percentage Error (MAPE) and Directional Accuracy (DA). The combination benefits from both SDAE-B’s high accuracy and FAVAR’s interpretation features through impulse response functions (IRFs) and forecast error variance decomposition (FEVD). |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-01-24 2019-01-24T00:00:00Z 2020-06-30T00:30:48Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/73196 TID:202225682 |
url |
http://hdl.handle.net/10362/73196 |
identifier_str_mv |
TID:202225682 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137974009462784 |