Turbofan Engine Behaviour Forecasting using Flight Data and Machine Learning Methods
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.6/12666 |
Resumo: | The modern gas turbine engine widely used for aircraft propulsion is a complex integrated system which undergoes deterioration during operation due to the degradation of its gas path components. This dissertation outlines the importance of Engine Condition Monitoring (ECM) for a more efficient maintenance planning. Different ML approaches are compared with the application of predicting engine behaviour aiming at finding the optimal time for engine removal. The selected models were OLS, ARIMA, NeuralProphet, and Cond-LSTM. Long operating and maintenance history of two mature CF6-80C2 turbofan engines were used for the analysis, which allowed for the identification of the impact of different factors on engine performance. These factors were also considered when training the ML models, which resulted in models capable of performing prediction under specified operation and flight conditions. The Machine Learning (ML) models provided forecasting of the Exhaust Gas Temperature (EGT) parameter at take-off phase. Cond-LSTM is shown to be a reliable tool for forecasting engine EGT with a Mean Absolute Error (MAE) of 7.64?, allowing for gradual performance deterioration under specific operation type. In addition, forecasting engine performance parameters has shown to be useful for identifying the optimal time for performing important maintenance action, such as engine gas path cleaning. This thesis has shown that engine removal forecast can be more precise by using sophisticated trend monitoring and advanced ML methods. |
id |
RCAP_56511bd57b6ead75011ef8600a0d9260 |
---|---|
oai_identifier_str |
oai:ubibliorum.ubi.pt:10400.6/12666 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Turbofan Engine Behaviour Forecasting using Flight Data and Machine Learning MethodsCondition MonitoringForecastingMachine LearningManutenção PreditivaMotor TurbofanNeural NetworksDomínio/Área Científica::Engenharia e Tecnologia::Engenharia AeronáuticaThe modern gas turbine engine widely used for aircraft propulsion is a complex integrated system which undergoes deterioration during operation due to the degradation of its gas path components. This dissertation outlines the importance of Engine Condition Monitoring (ECM) for a more efficient maintenance planning. Different ML approaches are compared with the application of predicting engine behaviour aiming at finding the optimal time for engine removal. The selected models were OLS, ARIMA, NeuralProphet, and Cond-LSTM. Long operating and maintenance history of two mature CF6-80C2 turbofan engines were used for the analysis, which allowed for the identification of the impact of different factors on engine performance. These factors were also considered when training the ML models, which resulted in models capable of performing prediction under specified operation and flight conditions. The Machine Learning (ML) models provided forecasting of the Exhaust Gas Temperature (EGT) parameter at take-off phase. Cond-LSTM is shown to be a reliable tool for forecasting engine EGT with a Mean Absolute Error (MAE) of 7.64?, allowing for gradual performance deterioration under specific operation type. In addition, forecasting engine performance parameters has shown to be useful for identifying the optimal time for performing important maintenance action, such as engine gas path cleaning. This thesis has shown that engine removal forecast can be more precise by using sophisticated trend monitoring and advanced ML methods.O moderno motor de turbina a gás amplamente utilizado para propulsão de aeronaves é um sistema integrado complexo que sofre deterioração durante a operação devido à degradação de seus componentes do percurso do gás. Esta dissertação destaca a importância da monitorização da condição do motor para um planejamento de manutenção mais eficiente. Diferentes abordagens de Machine Learning (ML) são comparadas visando a aplicação de previsão do comportamento do motor com o objetivo de encontrar o momento ideal para a remoção do motor. Os modelos selecionados foram OLS, ARIMA, NeuralProphet e Cond-LSTM. O longo histórico de operação e manutenção de dois motores turbofan CF6-80C2 maduros foi usado para a análise, o que permitiu a identificação do impacto de diferentes fatores no desempenho do motor. Esses fatores também foram considerados no treinamento dos modelos de ML, o que resultou em modelos capazes de realizar a previsão em operação e condições de voo especificadas. Os modelos ML forneceram previsão do parâmetro Exhaust Gas Temperature (EGT) na fase de decolagem. O Cond-LSTM demonstrou ser uma ferramenta confiável para previsão do EGT do motor com um erro absoluto médio de 7,64 ?, permitindo a deterioração gradual do desempenho sob um tipo específico de operação. Além disso, a previsão dos parâmetros de desempenho do motor tem se mostrado útil para identificar o momento ideal para realizar ações de manutenção importantes, como a limpeza do percurso do gás do motor. Esta tese mostrou que a previsão de remoção do motor pode ser mais precisa usando um monitoramento sofisticado de tendências e métodos avançados de ML.Silva, André Resende Rodrigues dauBibliorumSilva, Fernanda Cavalcante da2023-10-09T00:30:27Z2021-12-072021-10-112021-12-07T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10400.6/12666TID:203175131enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-12-15T09:55:55Zoai:ubibliorum.ubi.pt:10400.6/12666Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T00:52:13.250544Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Turbofan Engine Behaviour Forecasting using Flight Data and Machine Learning Methods |
title |
Turbofan Engine Behaviour Forecasting using Flight Data and Machine Learning Methods |
spellingShingle |
Turbofan Engine Behaviour Forecasting using Flight Data and Machine Learning Methods Silva, Fernanda Cavalcante da Condition Monitoring Forecasting Machine Learning Manutenção Preditiva Motor Turbofan Neural Networks Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Aeronáutica |
title_short |
Turbofan Engine Behaviour Forecasting using Flight Data and Machine Learning Methods |
title_full |
Turbofan Engine Behaviour Forecasting using Flight Data and Machine Learning Methods |
title_fullStr |
Turbofan Engine Behaviour Forecasting using Flight Data and Machine Learning Methods |
title_full_unstemmed |
Turbofan Engine Behaviour Forecasting using Flight Data and Machine Learning Methods |
title_sort |
Turbofan Engine Behaviour Forecasting using Flight Data and Machine Learning Methods |
author |
Silva, Fernanda Cavalcante da |
author_facet |
Silva, Fernanda Cavalcante da |
author_role |
author |
dc.contributor.none.fl_str_mv |
Silva, André Resende Rodrigues da uBibliorum |
dc.contributor.author.fl_str_mv |
Silva, Fernanda Cavalcante da |
dc.subject.por.fl_str_mv |
Condition Monitoring Forecasting Machine Learning Manutenção Preditiva Motor Turbofan Neural Networks Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Aeronáutica |
topic |
Condition Monitoring Forecasting Machine Learning Manutenção Preditiva Motor Turbofan Neural Networks Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Aeronáutica |
description |
The modern gas turbine engine widely used for aircraft propulsion is a complex integrated system which undergoes deterioration during operation due to the degradation of its gas path components. This dissertation outlines the importance of Engine Condition Monitoring (ECM) for a more efficient maintenance planning. Different ML approaches are compared with the application of predicting engine behaviour aiming at finding the optimal time for engine removal. The selected models were OLS, ARIMA, NeuralProphet, and Cond-LSTM. Long operating and maintenance history of two mature CF6-80C2 turbofan engines were used for the analysis, which allowed for the identification of the impact of different factors on engine performance. These factors were also considered when training the ML models, which resulted in models capable of performing prediction under specified operation and flight conditions. The Machine Learning (ML) models provided forecasting of the Exhaust Gas Temperature (EGT) parameter at take-off phase. Cond-LSTM is shown to be a reliable tool for forecasting engine EGT with a Mean Absolute Error (MAE) of 7.64?, allowing for gradual performance deterioration under specific operation type. In addition, forecasting engine performance parameters has shown to be useful for identifying the optimal time for performing important maintenance action, such as engine gas path cleaning. This thesis has shown that engine removal forecast can be more precise by using sophisticated trend monitoring and advanced ML methods. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-12-07 2021-10-11 2021-12-07T00:00:00Z 2023-10-09T00:30:27Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.6/12666 TID:203175131 |
url |
http://hdl.handle.net/10400.6/12666 |
identifier_str_mv |
TID:203175131 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799136411139440640 |