AI-driven decision support for early detection of cardiac events: unveiling patterns and predicting myocardial ischemia
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10451/59885 |
Resumo: | © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
id |
RCAP_56ae9617b445dcebc99c5a15e79766f0 |
---|---|
oai_identifier_str |
oai:repositorio.ul.pt:10451/59885 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
AI-driven decision support for early detection of cardiac events: unveiling patterns and predicting myocardial ischemiaAortic stenosisArtificial intelligenceCardiovascular diseasesData miningExploratory data analysisMachine learningMyocardial infarctionPredictionPulmonary thromboembolismStenosis cardiology© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).Cardiovascular diseases (CVDs) account for a significant portion of global mortality, emphasizing the need for effective strategies. This study focuses on myocardial infarction, pulmonary thromboembolism, and aortic stenosis, aiming to empower medical practitioners with tools for informed decision making and timely interventions. Drawing from data at Hospital Santa Maria, our approach combines exploratory data analysis (EDA) and predictive machine learning (ML) models, guided by the Cross-Industry Standard Process for Data Mining (CRISP-DM) methodology. EDA reveals intricate patterns and relationships specific to cardiovascular diseases. ML models achieve accuracies above 80%, providing a 13 min window to predict myocardial ischemia incidents and intervene proactively. This paper presents a Proof of Concept for real-time data and predictive capabilities in enhancing medical strategies.This work was partially funded by national funds through FCT—Fundação para a Ciência e Tecnologia, I.P., under the projects FCT UIDB/04466/2020, and FCT DSAIPA/AI/0122/2020 AIMHealth—Mobile Applications Based on Artificial Intelligence. This research also received funding from ERAMUS+ project NEMM with grant 101083048. During the development of this work, Luís Elvas was a Ph.D. grant holder, funded by FCT with UI/BD/151494/2021.MDPIRepositório da Universidade de LisboaElvas, Luís B.Nunes, MiguelFerreira, Joao C.Dias, Miguel SalesRosario, Luis2023-10-18T14:20:34Z20232023-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10451/59885engJ Pers Med. 2023 Sep 21;13(9):142110.3390/jpm130914212075-4426info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-08T17:08:56Zoai:repositorio.ul.pt:10451/59885Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T22:09:33.826389Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
AI-driven decision support for early detection of cardiac events: unveiling patterns and predicting myocardial ischemia |
title |
AI-driven decision support for early detection of cardiac events: unveiling patterns and predicting myocardial ischemia |
spellingShingle |
AI-driven decision support for early detection of cardiac events: unveiling patterns and predicting myocardial ischemia Elvas, Luís B. Aortic stenosis Artificial intelligence Cardiovascular diseases Data mining Exploratory data analysis Machine learning Myocardial infarction Prediction Pulmonary thromboembolism Stenosis cardiology |
title_short |
AI-driven decision support for early detection of cardiac events: unveiling patterns and predicting myocardial ischemia |
title_full |
AI-driven decision support for early detection of cardiac events: unveiling patterns and predicting myocardial ischemia |
title_fullStr |
AI-driven decision support for early detection of cardiac events: unveiling patterns and predicting myocardial ischemia |
title_full_unstemmed |
AI-driven decision support for early detection of cardiac events: unveiling patterns and predicting myocardial ischemia |
title_sort |
AI-driven decision support for early detection of cardiac events: unveiling patterns and predicting myocardial ischemia |
author |
Elvas, Luís B. |
author_facet |
Elvas, Luís B. Nunes, Miguel Ferreira, Joao C. Dias, Miguel Sales Rosario, Luis |
author_role |
author |
author2 |
Nunes, Miguel Ferreira, Joao C. Dias, Miguel Sales Rosario, Luis |
author2_role |
author author author author |
dc.contributor.none.fl_str_mv |
Repositório da Universidade de Lisboa |
dc.contributor.author.fl_str_mv |
Elvas, Luís B. Nunes, Miguel Ferreira, Joao C. Dias, Miguel Sales Rosario, Luis |
dc.subject.por.fl_str_mv |
Aortic stenosis Artificial intelligence Cardiovascular diseases Data mining Exploratory data analysis Machine learning Myocardial infarction Prediction Pulmonary thromboembolism Stenosis cardiology |
topic |
Aortic stenosis Artificial intelligence Cardiovascular diseases Data mining Exploratory data analysis Machine learning Myocardial infarction Prediction Pulmonary thromboembolism Stenosis cardiology |
description |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-10-18T14:20:34Z 2023 2023-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10451/59885 |
url |
http://hdl.handle.net/10451/59885 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
J Pers Med. 2023 Sep 21;13(9):1421 10.3390/jpm13091421 2075-4426 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
MDPI |
publisher.none.fl_str_mv |
MDPI |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799134650715602944 |