Semi-Automatic Methodology for Fire Break Maintenance Operations Detection with Sentinel-2 Imagery and Artificial Neural Network
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/116901 |
Resumo: | PTDC/CCI-COM/30344/2017 PCIF/SSI/0102/2017 UID/EEA/00066/2019 UIDB/00239/2020 |
id |
RCAP_56fc158d19b55106f8f533202345066d |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/116901 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Semi-Automatic Methodology for Fire Break Maintenance Operations Detection with Sentinel-2 Imagery and Artificial Neural NetworkArtificial neural networksChange detectionFire breakObject-based classificationRemote sensingSentinel-2WildfiresEarth and Planetary Sciences(all)PTDC/CCI-COM/30344/2017 PCIF/SSI/0102/2017 UID/EEA/00066/2019 UIDB/00239/2020The difficult job of fighting fires and the nearly impossible task to stop a wildfire without great casualties requires an imperative implementation of proactive strategies. These strategies must decrease the number of fires, the burnt area and create better conditions for the firefighting. In this line of action, the Portuguese Institute of Nature and Forest Conservation defined a fire break network (FBN), which helps controlling wildfires. However, these fire breaks are efficient only if they are correctly maintained, which should be ensured by the local authorities and requires verification from the national authorities. This is a fastidious task since they have a large network of thousands of hectares to monitor over a full year. With the increasing quality and frequency of the Earth Observation Satellite imagery with Sentinel-2 and the definition of the FBN, a semi-automatic remote sensing methodology is proposed in this article for the detection of maintenance operations in a fire break. The proposed methodology is based on a time-series analysis, an object-based classification and a change detection process. The change detection is ensured by an artificial neural network, with reflectance bands and spectral indices as features. Additionally, an analysis of several bands and spectral indices is presented to show the behaviour of the data during a full year and in the presence of a maintenance operation. The proposed methodology achieved a relative error lower than 4% and a recall higher than 75% on the detection of maintenance operations.CTS - Centro de Tecnologia e SistemasUNINOVA-Instituto de Desenvolvimento de Novas TecnologiasRUNPereira-Pires, JoãoAubard, ValentineRibeiro, Rita A.Fonseca, José M.Silva, João M. N.Mora, André2021-05-03T22:55:14Z2020-03-122020-03-12T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10362/116901engPURE: 28851036https://doi.org/10.3390/rs12060909info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T04:59:47Zoai:run.unl.pt:10362/116901Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:43:21.746501Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Semi-Automatic Methodology for Fire Break Maintenance Operations Detection with Sentinel-2 Imagery and Artificial Neural Network |
title |
Semi-Automatic Methodology for Fire Break Maintenance Operations Detection with Sentinel-2 Imagery and Artificial Neural Network |
spellingShingle |
Semi-Automatic Methodology for Fire Break Maintenance Operations Detection with Sentinel-2 Imagery and Artificial Neural Network Pereira-Pires, João Artificial neural networks Change detection Fire break Object-based classification Remote sensing Sentinel-2 Wildfires Earth and Planetary Sciences(all) |
title_short |
Semi-Automatic Methodology for Fire Break Maintenance Operations Detection with Sentinel-2 Imagery and Artificial Neural Network |
title_full |
Semi-Automatic Methodology for Fire Break Maintenance Operations Detection with Sentinel-2 Imagery and Artificial Neural Network |
title_fullStr |
Semi-Automatic Methodology for Fire Break Maintenance Operations Detection with Sentinel-2 Imagery and Artificial Neural Network |
title_full_unstemmed |
Semi-Automatic Methodology for Fire Break Maintenance Operations Detection with Sentinel-2 Imagery and Artificial Neural Network |
title_sort |
Semi-Automatic Methodology for Fire Break Maintenance Operations Detection with Sentinel-2 Imagery and Artificial Neural Network |
author |
Pereira-Pires, João |
author_facet |
Pereira-Pires, João Aubard, Valentine Ribeiro, Rita A. Fonseca, José M. Silva, João M. N. Mora, André |
author_role |
author |
author2 |
Aubard, Valentine Ribeiro, Rita A. Fonseca, José M. Silva, João M. N. Mora, André |
author2_role |
author author author author author |
dc.contributor.none.fl_str_mv |
CTS - Centro de Tecnologia e Sistemas UNINOVA-Instituto de Desenvolvimento de Novas Tecnologias RUN |
dc.contributor.author.fl_str_mv |
Pereira-Pires, João Aubard, Valentine Ribeiro, Rita A. Fonseca, José M. Silva, João M. N. Mora, André |
dc.subject.por.fl_str_mv |
Artificial neural networks Change detection Fire break Object-based classification Remote sensing Sentinel-2 Wildfires Earth and Planetary Sciences(all) |
topic |
Artificial neural networks Change detection Fire break Object-based classification Remote sensing Sentinel-2 Wildfires Earth and Planetary Sciences(all) |
description |
PTDC/CCI-COM/30344/2017 PCIF/SSI/0102/2017 UID/EEA/00066/2019 UIDB/00239/2020 |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-03-12 2020-03-12T00:00:00Z 2021-05-03T22:55:14Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/116901 |
url |
http://hdl.handle.net/10362/116901 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
PURE: 28851036 https://doi.org/10.3390/rs12060909 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799138043328724992 |