Boreholes plans optimization methodology combining geostatistical simulation and simulated annealing

Detalhes bibliográficos
Autor(a) principal: Pinheiro, Marisa Mota
Data de Publicação: 2017
Outros Autores: Emery, Xavier, Rocha, Ana Maria A. C., Miranda, Tiago F. S., Lamas, Luís
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/1822/49693
Resumo: Nowadays, the prospection plans have the difficult task of ensuring a more complete and rich characterization of the rock mass for the purpose of optimizing costs and increasing safety in geotechnical projects. Currently, boreholes location and depth are mainly defined based on experience and know-how of professionals, as such, it is user-dependent. Hence, there is a lack of methodologies to help the decision-makers in defining the optimal location of boreholes (with relevant information). Therefore, this paper presents a methodology based on the use of geostatistical conditional simulation allied to a stochastic global optimization algorithm (Simulated Annealing) to develop optimized boreholes plans comparing a uni-objective and a multi-criteria optimization approaches. In this work, the optimized location is considered the one that minimizes uncertainty translated by either the average local variance or the average width of 95% probability intervals of simulated values at unsampled locations. This methodology was applied using preliminary information obtained from previously executed boreholes using as variable the empirical rock mass classification system, Rock Mass Rating, in a Chilean deposit.
id RCAP_57204bcb2ebc6dbbb46f983aa7a85572
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/49693
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Boreholes plans optimization methodology combining geostatistical simulation and simulated annealingGeostatistical simulationBoreholes optimizationSimulated annealingMulti-criteria approachGeotechnical prospection plansScience & TechnologyNowadays, the prospection plans have the difficult task of ensuring a more complete and rich characterization of the rock mass for the purpose of optimizing costs and increasing safety in geotechnical projects. Currently, boreholes location and depth are mainly defined based on experience and know-how of professionals, as such, it is user-dependent. Hence, there is a lack of methodologies to help the decision-makers in defining the optimal location of boreholes (with relevant information). Therefore, this paper presents a methodology based on the use of geostatistical conditional simulation allied to a stochastic global optimization algorithm (Simulated Annealing) to develop optimized boreholes plans comparing a uni-objective and a multi-criteria optimization approaches. In this work, the optimized location is considered the one that minimizes uncertainty translated by either the average local variance or the average width of 95% probability intervals of simulated values at unsampled locations. This methodology was applied using preliminary information obtained from previously executed boreholes using as variable the empirical rock mass classification system, Rock Mass Rating, in a Chilean deposit.This research is inserted in LNEC project named P2I-RockGeoStat and was partially funded by FCT (Fundação para a Ciência e Tecnologia, Portugal) in the scope of project PEst-UID/CEC/00319/2013, included in ISISE project UID/ECl/04029/2013 as well as the PhD grant SFRH/BD/89627/2012, and by the Chilean Commission for Scientific and Technological Research, through Project CONICYT PIA Anillo ACT1407.info:eu-repo/semantics/publishedVersionElsevierUniversidade do MinhoPinheiro, Marisa MotaEmery, XavierRocha, Ana Maria A. C.Miranda, Tiago F. S.Lamas, Luís2017-112017-11-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/49693eng0886-779810.1016/j.tust.2017.07.003info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:42:31Zoai:repositorium.sdum.uminho.pt:1822/49693Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:39:47.018457Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Boreholes plans optimization methodology combining geostatistical simulation and simulated annealing
title Boreholes plans optimization methodology combining geostatistical simulation and simulated annealing
spellingShingle Boreholes plans optimization methodology combining geostatistical simulation and simulated annealing
Pinheiro, Marisa Mota
Geostatistical simulation
Boreholes optimization
Simulated annealing
Multi-criteria approach
Geotechnical prospection plans
Science & Technology
title_short Boreholes plans optimization methodology combining geostatistical simulation and simulated annealing
title_full Boreholes plans optimization methodology combining geostatistical simulation and simulated annealing
title_fullStr Boreholes plans optimization methodology combining geostatistical simulation and simulated annealing
title_full_unstemmed Boreholes plans optimization methodology combining geostatistical simulation and simulated annealing
title_sort Boreholes plans optimization methodology combining geostatistical simulation and simulated annealing
author Pinheiro, Marisa Mota
author_facet Pinheiro, Marisa Mota
Emery, Xavier
Rocha, Ana Maria A. C.
Miranda, Tiago F. S.
Lamas, Luís
author_role author
author2 Emery, Xavier
Rocha, Ana Maria A. C.
Miranda, Tiago F. S.
Lamas, Luís
author2_role author
author
author
author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Pinheiro, Marisa Mota
Emery, Xavier
Rocha, Ana Maria A. C.
Miranda, Tiago F. S.
Lamas, Luís
dc.subject.por.fl_str_mv Geostatistical simulation
Boreholes optimization
Simulated annealing
Multi-criteria approach
Geotechnical prospection plans
Science & Technology
topic Geostatistical simulation
Boreholes optimization
Simulated annealing
Multi-criteria approach
Geotechnical prospection plans
Science & Technology
description Nowadays, the prospection plans have the difficult task of ensuring a more complete and rich characterization of the rock mass for the purpose of optimizing costs and increasing safety in geotechnical projects. Currently, boreholes location and depth are mainly defined based on experience and know-how of professionals, as such, it is user-dependent. Hence, there is a lack of methodologies to help the decision-makers in defining the optimal location of boreholes (with relevant information). Therefore, this paper presents a methodology based on the use of geostatistical conditional simulation allied to a stochastic global optimization algorithm (Simulated Annealing) to develop optimized boreholes plans comparing a uni-objective and a multi-criteria optimization approaches. In this work, the optimized location is considered the one that minimizes uncertainty translated by either the average local variance or the average width of 95% probability intervals of simulated values at unsampled locations. This methodology was applied using preliminary information obtained from previously executed boreholes using as variable the empirical rock mass classification system, Rock Mass Rating, in a Chilean deposit.
publishDate 2017
dc.date.none.fl_str_mv 2017-11
2017-11-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1822/49693
url http://hdl.handle.net/1822/49693
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0886-7798
10.1016/j.tust.2017.07.003
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799132940620267521