Fast and reliable beam steering technologies for free-space optics systems
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/39007 |
Resumo: | With the ever-increasing demand for higher data rates and link capacity, signal distribution through high-capacity links becomes a crucial requirement. On top of that, the radio frequency spectrum congestion allied with the wireless connections’ intrinsic limitations requires alternatives. Free-Space Optics (FSO) communications appear as a very attractive solution for ultra-high-capacity fiber-wireless transmission in indoor and outdoor networks, for applications going from 5G and beyond, mainly due to its high optical bandwidth availability, high-security levels, and for being low-cost, and ease of deployment. If the FSO beam is directly collimated in an optical fiber, the received signal can be transmitted and routed under the conventional fiber-based network taking advantage of currently available optical communications systems and subsystems. However, this Line-of-sight (LOS) technology poses some constraints associated with atmospheric turbulence, beam divergence and pointing errors. Pointing errors is an adverse effect that mainly results from the misalignment between the transmitter and receiver, degrading the FSO link. Therefore, highly accurate acquisition, tracking and pointing (ATP) mechanisms will play an important role in FSO systems performance. This thesis aims to develop a multi-stage ATP system capable of providing bidirectional alignment. To accomplish that, gimbal-based ATP mechanisms are explored, starting with the characterization of technologies that can enable its full potential: i) quadrant-detector sensor, used for tracking and alignment of the FSO optical beam; and ii) power-based characterization of the light coupled in the optical fiber. The tolerance to pointing errors when using multi-mode fibers (MMFs) instead of single-mode fibers (SMFs) in seamless FSO-fiber links is also an object of study, with MMFs showing greater resilience mostly due to their higher core and numerical aperture. In that regard, algorithms for coarse and fine-tuning alignment are a cornerstone of this thesis. The last section demonstrates the advantages of using a cost-effective fiber-coupled multi-mode receiver over SMF coupling, registering a 2-fold bit-rate increase for a given 0.25 mrad FSO pointing error. The system capacity is enhanced through the use of an entropy loading technique based on probabilistic constellation shaping for multi-carrier signals, permitting to reach a bit-rate of ∼40 Gbps over 3m of free space distance. Finally, is analysed the interplay between beam alignment and multi-modal dispersion in the receiver-side MMF, by testing MMF lengths up to 1 km. |
id |
RCAP_575caa3d74878229b536838b14a5f387 |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/39007 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Fast and reliable beam steering technologies for free-space optics systemsFree-space opticsOptical beam steeringAcquisition tracking and pointing mechanismsPointing errorsMulti-mode fiber5GWith the ever-increasing demand for higher data rates and link capacity, signal distribution through high-capacity links becomes a crucial requirement. On top of that, the radio frequency spectrum congestion allied with the wireless connections’ intrinsic limitations requires alternatives. Free-Space Optics (FSO) communications appear as a very attractive solution for ultra-high-capacity fiber-wireless transmission in indoor and outdoor networks, for applications going from 5G and beyond, mainly due to its high optical bandwidth availability, high-security levels, and for being low-cost, and ease of deployment. If the FSO beam is directly collimated in an optical fiber, the received signal can be transmitted and routed under the conventional fiber-based network taking advantage of currently available optical communications systems and subsystems. However, this Line-of-sight (LOS) technology poses some constraints associated with atmospheric turbulence, beam divergence and pointing errors. Pointing errors is an adverse effect that mainly results from the misalignment between the transmitter and receiver, degrading the FSO link. Therefore, highly accurate acquisition, tracking and pointing (ATP) mechanisms will play an important role in FSO systems performance. This thesis aims to develop a multi-stage ATP system capable of providing bidirectional alignment. To accomplish that, gimbal-based ATP mechanisms are explored, starting with the characterization of technologies that can enable its full potential: i) quadrant-detector sensor, used for tracking and alignment of the FSO optical beam; and ii) power-based characterization of the light coupled in the optical fiber. The tolerance to pointing errors when using multi-mode fibers (MMFs) instead of single-mode fibers (SMFs) in seamless FSO-fiber links is also an object of study, with MMFs showing greater resilience mostly due to their higher core and numerical aperture. In that regard, algorithms for coarse and fine-tuning alignment are a cornerstone of this thesis. The last section demonstrates the advantages of using a cost-effective fiber-coupled multi-mode receiver over SMF coupling, registering a 2-fold bit-rate increase for a given 0.25 mrad FSO pointing error. The system capacity is enhanced through the use of an entropy loading technique based on probabilistic constellation shaping for multi-carrier signals, permitting to reach a bit-rate of ∼40 Gbps over 3m of free space distance. Finally, is analysed the interplay between beam alignment and multi-modal dispersion in the receiver-side MMF, by testing MMF lengths up to 1 km.Com a procura cada vez maior por taxas de dados e capacidades de ligação mais elevadas, a distribuição de sinal através de ligações de alta capacidade torna-se num requisito crucial. Além disso, o congestionamento do espectro de radio-frequências, aliado às limitações intrínsecas das conexões sem fios, exige alternativas. As comunicações óticas de espaço livre aparecem como uma solução muito atrativa para transmissões sem fios de elevada capacidade em redes interiores e exteriores, para aplicações 5G e além, principalmente devido à sua elevada disponibilidade de largura de banda ótica, elevados níveis de segurança e por ser de baixo custo e fácil implantação. Se o feixe da comunicação em espaço livre for diretamente colimado na fibra ótica, o sinal recebido pode ser transmitido e encaminhado sob as redes convencionais baseadas em fibra tirando partido dos sistemas e subsistemas atualmente disponíveis. No entanto, esta tecnologia apresenta alguns constrangimentos associados à turbulência atmosférica, divergência do feixe e erros de apontamento. Os erros de apontamento são um efeito adverso que principalmente resulta do desalinhamento entre o transmissor e o recetor, degradando a ligação ótica de espaço livre. Portanto, mecanismos de aquisição, rastreio e apontamento de alta precisão desempenharão um papel importante na performance dos sistemas óticos de espaço livre. Esta tese visa desenvolver um sistema multi-estágio de aquisição, rastreio e apontamento capaz de proporcionar um alinhamento bidirecional. Para o conseguir, são explorados mecanismos baseados em suspensão cardã, começando pela caraterização de tecnologias que garantam atingir todo o seu potencial: i) sensor detetor de quadrante, utilizado para rastreio e alinhamento do feixe ótico; e ii) caraterização baseada na potência da luz acoplada na fibra ótica. A tolerância a erros de apontamento ao utilizar fibras multimodo, em vez de fibras monomodo em ligações em espaço livre são também um objeto de estudo, com as fibras multimodo a demonstrarem maior resiliência principalmente devido ao seu núcleo e abertura numérica mais elevados. Neste sentido, algoritmos de alinhamento grosseiro e de afinação precisa são um foco nesta tese. A última secção demonstra as vantagens da utilização de um recetor multimodo acoplado à fibra, com uma boa relação custo-benefício, comparado a uma acoplação em fibra monomodo, tendo registado um aumento da taxa de bits em 2 vezes para um dado erro de apontamento em espaço livre de 0.25 mrad. A capacidade do sistema é potenciada através da utilização de uma técnica de carregamento de entropia baseada em mapeamento probabilístico da constelação para sinais com multi-transportadoras, possibilitando alcançar uma taxa de bits de ∼40 Gbps numa ligação em espaço livre de 3 m. Finalmente, é analisada a inter-relação entre o alinhamento do feixe e a dispersão multi-modal no lado do recetor, testando comprimentos de fibra multimodo até 1 km.2023-07-25T13:46:25Z2022-12-16T00:00:00Z2022-12-16info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/39007engFreitas, Manuel José Matias deinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T12:16:03Zoai:ria.ua.pt:10773/39007Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:09:13.289826Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Fast and reliable beam steering technologies for free-space optics systems |
title |
Fast and reliable beam steering technologies for free-space optics systems |
spellingShingle |
Fast and reliable beam steering technologies for free-space optics systems Freitas, Manuel José Matias de Free-space optics Optical beam steering Acquisition tracking and pointing mechanisms Pointing errors Multi-mode fiber 5G |
title_short |
Fast and reliable beam steering technologies for free-space optics systems |
title_full |
Fast and reliable beam steering technologies for free-space optics systems |
title_fullStr |
Fast and reliable beam steering technologies for free-space optics systems |
title_full_unstemmed |
Fast and reliable beam steering technologies for free-space optics systems |
title_sort |
Fast and reliable beam steering technologies for free-space optics systems |
author |
Freitas, Manuel José Matias de |
author_facet |
Freitas, Manuel José Matias de |
author_role |
author |
dc.contributor.author.fl_str_mv |
Freitas, Manuel José Matias de |
dc.subject.por.fl_str_mv |
Free-space optics Optical beam steering Acquisition tracking and pointing mechanisms Pointing errors Multi-mode fiber 5G |
topic |
Free-space optics Optical beam steering Acquisition tracking and pointing mechanisms Pointing errors Multi-mode fiber 5G |
description |
With the ever-increasing demand for higher data rates and link capacity, signal distribution through high-capacity links becomes a crucial requirement. On top of that, the radio frequency spectrum congestion allied with the wireless connections’ intrinsic limitations requires alternatives. Free-Space Optics (FSO) communications appear as a very attractive solution for ultra-high-capacity fiber-wireless transmission in indoor and outdoor networks, for applications going from 5G and beyond, mainly due to its high optical bandwidth availability, high-security levels, and for being low-cost, and ease of deployment. If the FSO beam is directly collimated in an optical fiber, the received signal can be transmitted and routed under the conventional fiber-based network taking advantage of currently available optical communications systems and subsystems. However, this Line-of-sight (LOS) technology poses some constraints associated with atmospheric turbulence, beam divergence and pointing errors. Pointing errors is an adverse effect that mainly results from the misalignment between the transmitter and receiver, degrading the FSO link. Therefore, highly accurate acquisition, tracking and pointing (ATP) mechanisms will play an important role in FSO systems performance. This thesis aims to develop a multi-stage ATP system capable of providing bidirectional alignment. To accomplish that, gimbal-based ATP mechanisms are explored, starting with the characterization of technologies that can enable its full potential: i) quadrant-detector sensor, used for tracking and alignment of the FSO optical beam; and ii) power-based characterization of the light coupled in the optical fiber. The tolerance to pointing errors when using multi-mode fibers (MMFs) instead of single-mode fibers (SMFs) in seamless FSO-fiber links is also an object of study, with MMFs showing greater resilience mostly due to their higher core and numerical aperture. In that regard, algorithms for coarse and fine-tuning alignment are a cornerstone of this thesis. The last section demonstrates the advantages of using a cost-effective fiber-coupled multi-mode receiver over SMF coupling, registering a 2-fold bit-rate increase for a given 0.25 mrad FSO pointing error. The system capacity is enhanced through the use of an entropy loading technique based on probabilistic constellation shaping for multi-carrier signals, permitting to reach a bit-rate of ∼40 Gbps over 3m of free space distance. Finally, is analysed the interplay between beam alignment and multi-modal dispersion in the receiver-side MMF, by testing MMF lengths up to 1 km. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-12-16T00:00:00Z 2022-12-16 2023-07-25T13:46:25Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/39007 |
url |
http://hdl.handle.net/10773/39007 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137743491563520 |