Deep learning applied to the classification of skin lesions

Detalhes bibliográficos
Autor(a) principal: Silva, Giuliana Martins
Data de Publicação: 2023
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10198/29071
Resumo: Mestrado de dupla diplomação com a UTFPR - Universidade Tecnológica Federal do Paraná
id RCAP_57a889b93e1dcaa9dadd35b67569b923
oai_identifier_str oai:bibliotecadigital.ipb.pt:10198/29071
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Deep learning applied to the classification of skin lesionsDeep learningSkin lesion classificationImage preprocessingDomínio/Área Científica::Engenharia e Tecnologia::Outras Engenharias e TecnologiasMestrado de dupla diplomação com a UTFPR - Universidade Tecnológica Federal do ParanáSkin cancer has been a global health issue and its diagnosis is a challenge in the medical field. Among all the types of skin cancer, melanoma is the worst and can be lethal if not early treated. The use of deep learning techniques, specifically, convolutional neural networks can help to improve the accuracy and speed up the classification of skin lesions. In this work, we aim to employ different image preprocessing techniques, various convolutional neural network models, data augmentation, and ensemble techniques to compare their results and provide an analysis of the data obtained. To achieve that, it was performed several experiments combining different image preprocessing techniques, which, paired with data augmentation strategies, aim to enhance the accuracy and reliability of the classification models. Additionally, three ensemble methods were tested to improve the classification systems’ robustness and reliability by gathering the strengths of each model. Our best result was the ensemble of EfficientNet-B2, EfficientNet-B5, and ResNeSt101 models with the application of data augmentation, and the combination of color constancy and hair removal techniques. This combined approach achieved a balanced accuracy of0.8132. By offering insights into the challenges faced, methodologies employed, and results obtained, this story aims to serve as a guide for researchers and practitioners aiming to advance the field of skin lesion classification using deep learning. Keywords: Deep Learning; Skin Lesion Classification; Image preprocessing.O câncer de pele é um problema de saúde global e seu diagnóstico é um desafio na área médica. Entre todos os tipos de câncer de pele, o melanoma é o pior e pode ser letal se não tratado precocemente. O uso de técnicas de deep learning, especificamente, redes neurais convolucionais, pode ajudar a melhorar a precisão e acelerar a classificação de lesões de pele. Neste trabalho, buscamos empregar diferentes técnicas de pré-processamento de imagens, vários modelos de redes neurais convolucionais, data augmentation e técnicas de ensemble para comparar seus resultados e fornecer uma análise dos dados obtidos. Para isso, foram realizados vários experimentos combinando diferentes técnicas de préprocessamento de imagens, que, combinadas com estratégias de data augmentation, visam melhorar a precisão e confiabilidade dos modelos de classificação. Além disso, três métodos de ensemble foram testados para melhorar a robustez e confiabilidade dos sistemas de classificação, reunindo os pontos fortes de cada modelo. Nosso melhor resultado foi o ensemble dos modelos EfficientNet-B2, EfficientNet-B5 e ResNeSt101 com a aplicação de data augmentation e a combinação de técnicas de color constancy e remoção de pelos. Esta abordagem alcançou uma balanced accuracy de 0,8132. Ao oferecer insights sobre as metodologias empregadas e resultados obtidos, este estudo visa servir como um guia para pesquisadores e profissionais que buscam avançar no campo da classificação de lesões cutâneas usando aprendizado profundo.Monteiro, Fernando C.Lazzaretti, André E.Biblioteca Digital do IPBSilva, Giuliana Martins2024-01-03T14:24:16Z20232023-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10198/29071TID:203444558enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-01-10T01:20:14Zoai:bibliotecadigital.ipb.pt:10198/29071Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T01:31:05.647670Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Deep learning applied to the classification of skin lesions
title Deep learning applied to the classification of skin lesions
spellingShingle Deep learning applied to the classification of skin lesions
Silva, Giuliana Martins
Deep learning
Skin lesion classification
Image preprocessing
Domínio/Área Científica::Engenharia e Tecnologia::Outras Engenharias e Tecnologias
title_short Deep learning applied to the classification of skin lesions
title_full Deep learning applied to the classification of skin lesions
title_fullStr Deep learning applied to the classification of skin lesions
title_full_unstemmed Deep learning applied to the classification of skin lesions
title_sort Deep learning applied to the classification of skin lesions
author Silva, Giuliana Martins
author_facet Silva, Giuliana Martins
author_role author
dc.contributor.none.fl_str_mv Monteiro, Fernando C.
Lazzaretti, André E.
Biblioteca Digital do IPB
dc.contributor.author.fl_str_mv Silva, Giuliana Martins
dc.subject.por.fl_str_mv Deep learning
Skin lesion classification
Image preprocessing
Domínio/Área Científica::Engenharia e Tecnologia::Outras Engenharias e Tecnologias
topic Deep learning
Skin lesion classification
Image preprocessing
Domínio/Área Científica::Engenharia e Tecnologia::Outras Engenharias e Tecnologias
description Mestrado de dupla diplomação com a UTFPR - Universidade Tecnológica Federal do Paraná
publishDate 2023
dc.date.none.fl_str_mv 2023
2023-01-01T00:00:00Z
2024-01-03T14:24:16Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10198/29071
TID:203444558
url http://hdl.handle.net/10198/29071
identifier_str_mv TID:203444558
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799136793020334080