Day-ahead Resource Scheduling Including Demand Response for Electric Vehicles

Detalhes bibliográficos
Autor(a) principal: Soares, João
Data de Publicação: 2013
Outros Autores: Sousa, Tiago, Morais, Hugo, Vale, Zita
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.22/5242
Resumo: The energy resource scheduling is becoming increasingly important, as the use of distributed resources is intensified and massive gridable vehicle (V2G) use is envisaged. This paper presents a methodology for day-ahead energy resource scheduling for smart grids considering the intensive use of distributed generation and V2G. The main focus is the comparison of different EV management approaches in the day-ahead energy resources management, namely uncontrolled charging, smart charging, V2G and Demand Response (DR) programs i n the V2G approach. Three different DR programs are designed and tested (trip reduce, shifting reduce and reduce+shifting). Othe r important contribution of the paper is the comparison between deterministic and computational intelligence techniques to reduce the execution time. The proposed scheduling is solved with a modified particle swarm optimization. Mixed integer non-linear programming is also used for comparison purposes. Full ac power flow calculation is included to allow taking into account the network constraints. A case study with a 33-bus distribution network and 2000 V2G resources is used to illustrate the performance of the proposed method.
id RCAP_57dd9eea32e4529e97bc0432faedf8b8
oai_identifier_str oai:recipp.ipp.pt:10400.22/5242
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Day-ahead Resource Scheduling Including Demand Response for Electric VehiclesDemand responseelectric vehicleEnergy resource managementParticle swarm optimizationThe energy resource scheduling is becoming increasingly important, as the use of distributed resources is intensified and massive gridable vehicle (V2G) use is envisaged. This paper presents a methodology for day-ahead energy resource scheduling for smart grids considering the intensive use of distributed generation and V2G. The main focus is the comparison of different EV management approaches in the day-ahead energy resources management, namely uncontrolled charging, smart charging, V2G and Demand Response (DR) programs i n the V2G approach. Three different DR programs are designed and tested (trip reduce, shifting reduce and reduce+shifting). Othe r important contribution of the paper is the comparison between deterministic and computational intelligence techniques to reduce the execution time. The proposed scheduling is solved with a modified particle swarm optimization. Mixed integer non-linear programming is also used for comparison purposes. Full ac power flow calculation is included to allow taking into account the network constraints. A case study with a 33-bus distribution network and 2000 V2G resources is used to illustrate the performance of the proposed method.IEEERepositório Científico do Instituto Politécnico do PortoSoares, JoãoSousa, TiagoMorais, HugoVale, Zita2014-12-09T12:48:30Z2013-032013-03-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.22/5242engSoares, J.; Morais, H.; Sousa, T.; Vale, Z.; Faria, P., "Day-Ahead Resource Scheduling Including Demand Response for Electric Vehicles," Smart Grid, IEEE Transactions on , vol.4, no.1, pp.596,605, March 2013 doi: 10.1109/TSG.2012.223586510.1109/TSG.2012.2235865info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-03-13T12:45:15Zoai:recipp.ipp.pt:10400.22/5242Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T17:25:56.221256Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Day-ahead Resource Scheduling Including Demand Response for Electric Vehicles
title Day-ahead Resource Scheduling Including Demand Response for Electric Vehicles
spellingShingle Day-ahead Resource Scheduling Including Demand Response for Electric Vehicles
Soares, João
Demand response
electric vehicle
Energy resource management
Particle swarm optimization
title_short Day-ahead Resource Scheduling Including Demand Response for Electric Vehicles
title_full Day-ahead Resource Scheduling Including Demand Response for Electric Vehicles
title_fullStr Day-ahead Resource Scheduling Including Demand Response for Electric Vehicles
title_full_unstemmed Day-ahead Resource Scheduling Including Demand Response for Electric Vehicles
title_sort Day-ahead Resource Scheduling Including Demand Response for Electric Vehicles
author Soares, João
author_facet Soares, João
Sousa, Tiago
Morais, Hugo
Vale, Zita
author_role author
author2 Sousa, Tiago
Morais, Hugo
Vale, Zita
author2_role author
author
author
dc.contributor.none.fl_str_mv Repositório Científico do Instituto Politécnico do Porto
dc.contributor.author.fl_str_mv Soares, João
Sousa, Tiago
Morais, Hugo
Vale, Zita
dc.subject.por.fl_str_mv Demand response
electric vehicle
Energy resource management
Particle swarm optimization
topic Demand response
electric vehicle
Energy resource management
Particle swarm optimization
description The energy resource scheduling is becoming increasingly important, as the use of distributed resources is intensified and massive gridable vehicle (V2G) use is envisaged. This paper presents a methodology for day-ahead energy resource scheduling for smart grids considering the intensive use of distributed generation and V2G. The main focus is the comparison of different EV management approaches in the day-ahead energy resources management, namely uncontrolled charging, smart charging, V2G and Demand Response (DR) programs i n the V2G approach. Three different DR programs are designed and tested (trip reduce, shifting reduce and reduce+shifting). Othe r important contribution of the paper is the comparison between deterministic and computational intelligence techniques to reduce the execution time. The proposed scheduling is solved with a modified particle swarm optimization. Mixed integer non-linear programming is also used for comparison purposes. Full ac power flow calculation is included to allow taking into account the network constraints. A case study with a 33-bus distribution network and 2000 V2G resources is used to illustrate the performance of the proposed method.
publishDate 2013
dc.date.none.fl_str_mv 2013-03
2013-03-01T00:00:00Z
2014-12-09T12:48:30Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.22/5242
url http://hdl.handle.net/10400.22/5242
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Soares, J.; Morais, H.; Sousa, T.; Vale, Z.; Faria, P., "Day-Ahead Resource Scheduling Including Demand Response for Electric Vehicles," Smart Grid, IEEE Transactions on , vol.4, no.1, pp.596,605, March 2013 doi: 10.1109/TSG.2012.2235865
10.1109/TSG.2012.2235865
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv IEEE
publisher.none.fl_str_mv IEEE
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799131353782943744