Time Alignment Measurement for Time Series
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
DOI: | 10.1016/j.patcog.2018.04.003 |
Texto Completo: | https://doi.org/10.1016/j.patcog.2018.04.003 |
Resumo: | Sem PDF conforme despacho. This work was supported by North Portugal Regional Operational Programme (NORTE 2020), Portugal 2020 and the European Regional Development Fund (ERDF) from European Union through the project Symbiotic technology for societal efficiency gains: Deus ex Machina (DEM) [NORTE-01-0145-FEDER-000026]. |
id |
RCAP_5855e5ec815231ebe9e2e20c98930159 |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/59127 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Time Alignment Measurement for Time SeriesDistanceSignal alignmentSimilarityTime seriesTime warpingSoftwareSignal ProcessingComputer Vision and Pattern RecognitionArtificial IntelligenceSem PDF conforme despacho. This work was supported by North Portugal Regional Operational Programme (NORTE 2020), Portugal 2020 and the European Regional Development Fund (ERDF) from European Union through the project Symbiotic technology for societal efficiency gains: Deus ex Machina (DEM) [NORTE-01-0145-FEDER-000026].When a comparison between time series is required, measurement functions provide meaningful scores to characterize similarity between sequences. Quite often, time series appear warped in time, i.e, although they may exhibit amplitude and shape similarity, they appear dephased in time. The most common algorithm to overcome this challenge is the Dynamic Time Warping, which aligns each sequence prior establishing distance measurements. However, Dynamic Time Warping takes only into account amplitude similarity. A distance which characterizes the degree of time warping between two sequences can deliver new insights for applications where the timing factor is essential, such well-defined movements during sports or rehabilitation exercises. We propose a novel measurement called Time Alignment Measurement, which delivers similarity information on the temporal domain. We demonstrate the potential of our approach in measuring performance of time series alignment methodologies and in the characterization of synthetic and real time series data acquired during human movement.DF – Departamento de FísicaLIBPhys-UNLRUNFolgado, DuarteBarandas, MaríliaMatias, RicardoMartins, Rodrigo S.Carvalho, MiguelGamboa, Hugo2019-01-30T23:41:46Z2018-09-012018-09-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article12application/pdfhttps://doi.org/10.1016/j.patcog.2018.04.003eng0031-3203PURE: 11400423http://www.scopus.com/inward/record.url?scp=85045472724&partnerID=8YFLogxKhttps://doi.org/10.1016/j.patcog.2018.04.003info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-05-22T17:36:54Zoai:run.unl.pt:10362/59127Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-05-22T17:36:54Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Time Alignment Measurement for Time Series |
title |
Time Alignment Measurement for Time Series |
spellingShingle |
Time Alignment Measurement for Time Series Time Alignment Measurement for Time Series Folgado, Duarte Distance Signal alignment Similarity Time series Time warping Software Signal Processing Computer Vision and Pattern Recognition Artificial Intelligence Folgado, Duarte Distance Signal alignment Similarity Time series Time warping Software Signal Processing Computer Vision and Pattern Recognition Artificial Intelligence |
title_short |
Time Alignment Measurement for Time Series |
title_full |
Time Alignment Measurement for Time Series |
title_fullStr |
Time Alignment Measurement for Time Series Time Alignment Measurement for Time Series |
title_full_unstemmed |
Time Alignment Measurement for Time Series Time Alignment Measurement for Time Series |
title_sort |
Time Alignment Measurement for Time Series |
author |
Folgado, Duarte |
author_facet |
Folgado, Duarte Folgado, Duarte Barandas, Marília Matias, Ricardo Martins, Rodrigo S. Carvalho, Miguel Gamboa, Hugo Barandas, Marília Matias, Ricardo Martins, Rodrigo S. Carvalho, Miguel Gamboa, Hugo |
author_role |
author |
author2 |
Barandas, Marília Matias, Ricardo Martins, Rodrigo S. Carvalho, Miguel Gamboa, Hugo |
author2_role |
author author author author author |
dc.contributor.none.fl_str_mv |
DF – Departamento de Física LIBPhys-UNL RUN |
dc.contributor.author.fl_str_mv |
Folgado, Duarte Barandas, Marília Matias, Ricardo Martins, Rodrigo S. Carvalho, Miguel Gamboa, Hugo |
dc.subject.por.fl_str_mv |
Distance Signal alignment Similarity Time series Time warping Software Signal Processing Computer Vision and Pattern Recognition Artificial Intelligence |
topic |
Distance Signal alignment Similarity Time series Time warping Software Signal Processing Computer Vision and Pattern Recognition Artificial Intelligence |
description |
Sem PDF conforme despacho. This work was supported by North Portugal Regional Operational Programme (NORTE 2020), Portugal 2020 and the European Regional Development Fund (ERDF) from European Union through the project Symbiotic technology for societal efficiency gains: Deus ex Machina (DEM) [NORTE-01-0145-FEDER-000026]. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-09-01 2018-09-01T00:00:00Z 2019-01-30T23:41:46Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://doi.org/10.1016/j.patcog.2018.04.003 |
url |
https://doi.org/10.1016/j.patcog.2018.04.003 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0031-3203 PURE: 11400423 http://www.scopus.com/inward/record.url?scp=85045472724&partnerID=8YFLogxK https://doi.org/10.1016/j.patcog.2018.04.003 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
12 application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
mluisa.alvim@gmail.com |
_version_ |
1822181944309317632 |
dc.identifier.doi.none.fl_str_mv |
10.1016/j.patcog.2018.04.003 |