A multigrid-like algorithm for probabilistic domain decomposition
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10071/13167 |
Resumo: | We present an iterative scheme, reminiscent of the Multigrid method, to solve large boundary value problems with Probabilistic Domain Decomposition (PDD). In it, increasingly accurate approximations to the solution are used as control variates in order to reduce the Monte Carlo error of the following iterates-resulting in an overall acceleration of PDD for a given error tolerance. The key feature of the proposed algorithm is the ability to approximately predict the speedup with little computational overhead and in parallel. Besides, the theoretical framework allows to explore other aspects of PDD, such as stability. One numerical example is worked out, yielding an improvement between one and two orders of magnitude over the previous version of PDD. |
id |
RCAP_58debd84becc030bc8cd5149288d1212 |
---|---|
oai_identifier_str |
oai:repositorio.iscte-iul.pt:10071/13167 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
A multigrid-like algorithm for probabilistic domain decompositionPDDDomain decompositionScalabilityHigh-performance supercomputingVariance reductionFeynman–Kac formulaWe present an iterative scheme, reminiscent of the Multigrid method, to solve large boundary value problems with Probabilistic Domain Decomposition (PDD). In it, increasingly accurate approximations to the solution are used as control variates in order to reduce the Monte Carlo error of the following iterates-resulting in an overall acceleration of PDD for a given error tolerance. The key feature of the proposed algorithm is the ability to approximately predict the speedup with little computational overhead and in parallel. Besides, the theoretical framework allows to explore other aspects of PDD, such as stability. One numerical example is worked out, yielding an improvement between one and two orders of magnitude over the previous version of PDD.Pergamon/Elsevier2017-05-02T14:00:46Z2016-01-01T00:00:00Z20162019-04-23T11:54:23Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10071/13167eng0898-122110.1016/j.camwa.2016.07.030Bernal, F.Acebron, J. A.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-09T17:48:59Zoai:repositorio.iscte-iul.pt:10071/13167Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T22:23:58.752083Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
A multigrid-like algorithm for probabilistic domain decomposition |
title |
A multigrid-like algorithm for probabilistic domain decomposition |
spellingShingle |
A multigrid-like algorithm for probabilistic domain decomposition Bernal, F. PDD Domain decomposition Scalability High-performance supercomputing Variance reduction Feynman–Kac formula |
title_short |
A multigrid-like algorithm for probabilistic domain decomposition |
title_full |
A multigrid-like algorithm for probabilistic domain decomposition |
title_fullStr |
A multigrid-like algorithm for probabilistic domain decomposition |
title_full_unstemmed |
A multigrid-like algorithm for probabilistic domain decomposition |
title_sort |
A multigrid-like algorithm for probabilistic domain decomposition |
author |
Bernal, F. |
author_facet |
Bernal, F. Acebron, J. A. |
author_role |
author |
author2 |
Acebron, J. A. |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Bernal, F. Acebron, J. A. |
dc.subject.por.fl_str_mv |
PDD Domain decomposition Scalability High-performance supercomputing Variance reduction Feynman–Kac formula |
topic |
PDD Domain decomposition Scalability High-performance supercomputing Variance reduction Feynman–Kac formula |
description |
We present an iterative scheme, reminiscent of the Multigrid method, to solve large boundary value problems with Probabilistic Domain Decomposition (PDD). In it, increasingly accurate approximations to the solution are used as control variates in order to reduce the Monte Carlo error of the following iterates-resulting in an overall acceleration of PDD for a given error tolerance. The key feature of the proposed algorithm is the ability to approximately predict the speedup with little computational overhead and in parallel. Besides, the theoretical framework allows to explore other aspects of PDD, such as stability. One numerical example is worked out, yielding an improvement between one and two orders of magnitude over the previous version of PDD. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-01-01T00:00:00Z 2016 2017-05-02T14:00:46Z 2019-04-23T11:54:23Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10071/13167 |
url |
http://hdl.handle.net/10071/13167 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0898-1221 10.1016/j.camwa.2016.07.030 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Pergamon/Elsevier |
publisher.none.fl_str_mv |
Pergamon/Elsevier |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799134801644486656 |