Implementation of NTRIP and Management System in NIGNET Network
Autor(a) principal: | |
---|---|
Data de Publicação: | 2015 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.6/5840 |
Resumo: | Nowadays, several applications require knowledge of their position in real time in order to achieve its intended design result. Global Navigation Satellite System (GNSS) has proved to be the most effective and efficient way of positioning in a global scale, using a GNSS receiver, to determine ones position with an accuracy of few millimetres. However, for centimetre-level accuracy such as Precise Point Positioning (PPP) one must use differential mode (directly or indirectly). In case of differential position, in Post-Processing (PP) or Real Time Kinematic (RTK) observation, one uses the GNSS observations from nearby Base stations, of which the position is well known, to determine ones relative position. Whichever way, the observations need to be corrected either by PP or in real time correction method in order to achieve higher positioning accuracy. These corrections, in the case of RTK mode, are mostly GNSS pseudoranges (distance measurements), positional (ephemeris) data and models, like ionosphere. These are simultaneously measured to all satellites in view, and using the known position of the receiver's antenna from each satellite, the errors in the pseudoranges and models are calculated at both the Base and the Rover GNSS receiver stations. These errors are converted to correction data at the Base station and broadcasted to Rover GNSS receivers in real time. As several applications are emerging to solve many positioning problems, the need to improve positioning solutions in real time is increasing. However, issues of transmitting these real time correction data has been a matter of concern. This is because, the use of several methods of transmitting real time correction data like Frequency Modulation Radio (FMR) has proved ineffective in terms of cost, efficiency and coverage. The current advancements in Internet and telecommunication systems have attracted the interest of researchers in using Internet as a Communication channel for the distribution of GNSS correction data in real time. Networked Transport of RTCM via Internet Protocol (NTRIP), which is a protocol that supports the streaming of GNSS correction data via the Internet for real time positioning, appears to be one of the best solutions for GNSS real time correction data distribution, because of the improved availability and coverage of Internet. This thesis focuses on the implementation of NTRIP protocol in NIGNET Network, which is a network of GNSS permanent stations in Nigeria, West Africa. It deals with the development of a management system for real time positioning services. A test bed approach, which was setup in Space and Earth Geometric Analysis Laboratory (SEGAL) was used during the implementation process. The BKG Standard NTRIP Caster, which runs on Linux Operating System was used in the implementation, and the management system was developed using the PHPStorm, Mysql, and NTC applications. The NTC application was developed in order to integrate the NTRIP system with the website which serves as a management system. The management system offers the administrator the flexibility to manage the NTRIP system, GNSS source generating data and users activities in a friendly web interface. In addition, a billing/payment mechanism integrated with PayPal online payment platform was incorporated in the management system. Furthermore, its viability was tested by carrying out test observations in RTK mode using Trimble R8 GNSS receiver and smart mobile phone. This was done by activating the Internet connectivity of the GNSS receiver using the smart mobile phone and configuring it to the mountpoint CLBR, which is a NIGNET station's mountpoint maintained by the NTRIP and Management System. Using the services of the NTRIP and Management System, real time correction data from CLBR station was able to be streamed to the GNSS receiver in RTK mode via the Internet. So far the results of the preliminary test are not yet satisfactory in terms of accuracy, due to the distance, but logistic constraints did not allow us to do the planned tests within at most 40-50km from CLBR. Nevertheless, the NTRIP and Management System was able to perform its designed purposes and can be used operationally for observations nearer the Reference Stations. |
id |
RCAP_5a4546b297ac1f4d5b16adaba8cb7a8d |
---|---|
oai_identifier_str |
oai:ubibliorum.ubi.pt:10400.6/5840 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Implementation of NTRIP and Management System in NIGNET NetworkGnssManagement SystemNignet NetworkNtcNtripReal Time CorrectionRtcmRtkDomínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e InformáticaNowadays, several applications require knowledge of their position in real time in order to achieve its intended design result. Global Navigation Satellite System (GNSS) has proved to be the most effective and efficient way of positioning in a global scale, using a GNSS receiver, to determine ones position with an accuracy of few millimetres. However, for centimetre-level accuracy such as Precise Point Positioning (PPP) one must use differential mode (directly or indirectly). In case of differential position, in Post-Processing (PP) or Real Time Kinematic (RTK) observation, one uses the GNSS observations from nearby Base stations, of which the position is well known, to determine ones relative position. Whichever way, the observations need to be corrected either by PP or in real time correction method in order to achieve higher positioning accuracy. These corrections, in the case of RTK mode, are mostly GNSS pseudoranges (distance measurements), positional (ephemeris) data and models, like ionosphere. These are simultaneously measured to all satellites in view, and using the known position of the receiver's antenna from each satellite, the errors in the pseudoranges and models are calculated at both the Base and the Rover GNSS receiver stations. These errors are converted to correction data at the Base station and broadcasted to Rover GNSS receivers in real time. As several applications are emerging to solve many positioning problems, the need to improve positioning solutions in real time is increasing. However, issues of transmitting these real time correction data has been a matter of concern. This is because, the use of several methods of transmitting real time correction data like Frequency Modulation Radio (FMR) has proved ineffective in terms of cost, efficiency and coverage. The current advancements in Internet and telecommunication systems have attracted the interest of researchers in using Internet as a Communication channel for the distribution of GNSS correction data in real time. Networked Transport of RTCM via Internet Protocol (NTRIP), which is a protocol that supports the streaming of GNSS correction data via the Internet for real time positioning, appears to be one of the best solutions for GNSS real time correction data distribution, because of the improved availability and coverage of Internet. This thesis focuses on the implementation of NTRIP protocol in NIGNET Network, which is a network of GNSS permanent stations in Nigeria, West Africa. It deals with the development of a management system for real time positioning services. A test bed approach, which was setup in Space and Earth Geometric Analysis Laboratory (SEGAL) was used during the implementation process. The BKG Standard NTRIP Caster, which runs on Linux Operating System was used in the implementation, and the management system was developed using the PHPStorm, Mysql, and NTC applications. The NTC application was developed in order to integrate the NTRIP system with the website which serves as a management system. The management system offers the administrator the flexibility to manage the NTRIP system, GNSS source generating data and users activities in a friendly web interface. In addition, a billing/payment mechanism integrated with PayPal online payment platform was incorporated in the management system. Furthermore, its viability was tested by carrying out test observations in RTK mode using Trimble R8 GNSS receiver and smart mobile phone. This was done by activating the Internet connectivity of the GNSS receiver using the smart mobile phone and configuring it to the mountpoint CLBR, which is a NIGNET station's mountpoint maintained by the NTRIP and Management System. Using the services of the NTRIP and Management System, real time correction data from CLBR station was able to be streamed to the GNSS receiver in RTK mode via the Internet. So far the results of the preliminary test are not yet satisfactory in terms of accuracy, due to the distance, but logistic constraints did not allow us to do the planned tests within at most 40-50km from CLBR. Nevertheless, the NTRIP and Management System was able to perform its designed purposes and can be used operationally for observations nearer the Reference Stations.Hoje em dia, várias aplicações exigem o conhecimento da sua posição em tempo real, a fim de atingir o resultado pretendido de criação. Global Navigation Satellite System (GNSS) provou ser a forma mais eficaz e eficiente de posicionamento em uma escala global, usando um receptor GNSS, para determinar as posições com uma precisão de poucos milímetros. No entanto, para precisão de centímetros, como Precise Positioning Ponto (PPP) deve-se usar o modo diferencial (direta ou indiretamente). Em caso de posição diferencial, no pós-processamento (PP) ou observação Cinemática em Tempo Real (RTK), um usa as observações GNSS das estações de base próximas, de que a posição é bem conhecida, para determinar as posições relativas. Seja como for, as observações precisam ser corrigidas, quer por PP ou no método de correção em tempo real a fim de alcançar a precisão de posicionamento superior. Estas correcções, no caso do modo RTK, são na sua maioria pseudo GNSS (medições à distância), os dados de posição (efemérides) e modelos, como a ionosfera. Estes são medidos simultaneamente para todos os satélites em vista, e usando a posição conhecida de antena do receptor de cada satélite, os erros nas pseudo divisões e modelos são calculados, tanto a base e as estações de recepção Rover GNSS. Esses erros são convertidos para dados de correção na estação de Base e transmitido para os receptores GNSS Rover em tempo real. Como vários aplicativos estão surgindo para resolver muitos problemas de posicionamento, a necessidade de melhorar soluções de posicionamento em tempo real está aumentando. No entanto, as questões de transmitir estes dados de correção em tempo real tem sido um motivo de preocupação. Isto é porque, a utilização de vários métodos de transmissão de dados de correcção de tempo real como de frequência de modulação de rádio (FMR) demonstrou ser ineficaz em termos de custo, eficácia e cobertura. Os avanços atuais em sistemas de Internet e de telecomunicações têm atraído o interesse de pesquisadores no uso de Internet como um canal de comunicação para a distribuição de dados de correção GNSS em tempo real. Networked Transport of RTCM via Internet Protocol (NTRIP), que é um protocolo que suporta o streaming de dados de correção GNSS através da Internet para o posicionamento em tempo real, parece ser uma das melhores soluções para GNSS em tempo real a distribuição de dados de correção, por causa da melhoria da disponibilidade e cobertura de Internet. Esta tese centra-se na implementação do protocolo NTRIP em NIGNET Network, que é uma rede de estações permanentes GNSS na Nigéria, na África Ocidental. Trata-se do desenvolvimento de um sistema de gestão para serviços de posicionamento em tempo real. Uma abordagem de ensaio, que foi instalado em espaço e Laboratório de Análise Geométrica Terra (SEGAL) foi utilizado durante o processo de implementação. A BKG Padrão NTRIP Caster, que roda em sistema operacional Linux foi usado na implementação, eo sistema de gestão foi desenvolvido utilizando o PHPStorm, MySQL e aplicações NTC. A aplicação NTC foi desenvolvido a fim de integrar o sistema NTRIP com o site que serve como um sistema de gestão. O sistema de gerenciamento oferece ao administrador a flexibilidade para gerenciar o sistema NTRIP, fonte de geração de dados GNSS e as atividades dos usuários em uma interface web amigável. Além disso, um mecanismo de cobrança / pagamento integrado com a plataforma de pagamento online PayPal foi incorporada no sistema de gestão. Além disso, a sua viabilidade foi testada através da realização de observações de teste no modo RTK usando receptor Trimble R8 GNSS e telefone celular inteligente. Isso foi feito através da activação da conectividade com a Internet do receptor GNSS usando o telefone móvel inteligente e configurá-lo para o CLBR ponto de montagem, que é ponto de montagem de uma estação NIGNET mantido pelo NTRIP e Sistema de Gestão. Usando os serviços do Sistema NTRIP e Gestão, dados de correção em tempo real da estação CLBR foi capaz de ser transmitido para o receptor GNSS RTK no modo via Internet. Newpage Até agora, os resultados do teste preliminar não são ainda satisfatórios em termos de precisão, devido à distância, mas as restrições logísticas não nos permitem fazer os testes planejados no prazo máximo de 40- 50km de CLBR. No entanto, o Sistema de Gestão de NTRIP e era capaz de realizar seus objetivos projetados e pode ser usado operacionalmente para observações mais próximas as Estações de Referência.Fernandes, Rui Manuel da SilvauBibliorumOkorukwu, Williams Okey2018-08-29T15:33:51Z2015-6-82015-07-032015-07-03T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10400.6/5840TID:201646935enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-12-15T09:44:01Zoai:ubibliorum.ubi.pt:10400.6/5840Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T00:46:42.055752Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Implementation of NTRIP and Management System in NIGNET Network |
title |
Implementation of NTRIP and Management System in NIGNET Network |
spellingShingle |
Implementation of NTRIP and Management System in NIGNET Network Okorukwu, Williams Okey Gnss Management System Nignet Network Ntc Ntrip Real Time Correction Rtcm Rtk Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática |
title_short |
Implementation of NTRIP and Management System in NIGNET Network |
title_full |
Implementation of NTRIP and Management System in NIGNET Network |
title_fullStr |
Implementation of NTRIP and Management System in NIGNET Network |
title_full_unstemmed |
Implementation of NTRIP and Management System in NIGNET Network |
title_sort |
Implementation of NTRIP and Management System in NIGNET Network |
author |
Okorukwu, Williams Okey |
author_facet |
Okorukwu, Williams Okey |
author_role |
author |
dc.contributor.none.fl_str_mv |
Fernandes, Rui Manuel da Silva uBibliorum |
dc.contributor.author.fl_str_mv |
Okorukwu, Williams Okey |
dc.subject.por.fl_str_mv |
Gnss Management System Nignet Network Ntc Ntrip Real Time Correction Rtcm Rtk Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática |
topic |
Gnss Management System Nignet Network Ntc Ntrip Real Time Correction Rtcm Rtk Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática |
description |
Nowadays, several applications require knowledge of their position in real time in order to achieve its intended design result. Global Navigation Satellite System (GNSS) has proved to be the most effective and efficient way of positioning in a global scale, using a GNSS receiver, to determine ones position with an accuracy of few millimetres. However, for centimetre-level accuracy such as Precise Point Positioning (PPP) one must use differential mode (directly or indirectly). In case of differential position, in Post-Processing (PP) or Real Time Kinematic (RTK) observation, one uses the GNSS observations from nearby Base stations, of which the position is well known, to determine ones relative position. Whichever way, the observations need to be corrected either by PP or in real time correction method in order to achieve higher positioning accuracy. These corrections, in the case of RTK mode, are mostly GNSS pseudoranges (distance measurements), positional (ephemeris) data and models, like ionosphere. These are simultaneously measured to all satellites in view, and using the known position of the receiver's antenna from each satellite, the errors in the pseudoranges and models are calculated at both the Base and the Rover GNSS receiver stations. These errors are converted to correction data at the Base station and broadcasted to Rover GNSS receivers in real time. As several applications are emerging to solve many positioning problems, the need to improve positioning solutions in real time is increasing. However, issues of transmitting these real time correction data has been a matter of concern. This is because, the use of several methods of transmitting real time correction data like Frequency Modulation Radio (FMR) has proved ineffective in terms of cost, efficiency and coverage. The current advancements in Internet and telecommunication systems have attracted the interest of researchers in using Internet as a Communication channel for the distribution of GNSS correction data in real time. Networked Transport of RTCM via Internet Protocol (NTRIP), which is a protocol that supports the streaming of GNSS correction data via the Internet for real time positioning, appears to be one of the best solutions for GNSS real time correction data distribution, because of the improved availability and coverage of Internet. This thesis focuses on the implementation of NTRIP protocol in NIGNET Network, which is a network of GNSS permanent stations in Nigeria, West Africa. It deals with the development of a management system for real time positioning services. A test bed approach, which was setup in Space and Earth Geometric Analysis Laboratory (SEGAL) was used during the implementation process. The BKG Standard NTRIP Caster, which runs on Linux Operating System was used in the implementation, and the management system was developed using the PHPStorm, Mysql, and NTC applications. The NTC application was developed in order to integrate the NTRIP system with the website which serves as a management system. The management system offers the administrator the flexibility to manage the NTRIP system, GNSS source generating data and users activities in a friendly web interface. In addition, a billing/payment mechanism integrated with PayPal online payment platform was incorporated in the management system. Furthermore, its viability was tested by carrying out test observations in RTK mode using Trimble R8 GNSS receiver and smart mobile phone. This was done by activating the Internet connectivity of the GNSS receiver using the smart mobile phone and configuring it to the mountpoint CLBR, which is a NIGNET station's mountpoint maintained by the NTRIP and Management System. Using the services of the NTRIP and Management System, real time correction data from CLBR station was able to be streamed to the GNSS receiver in RTK mode via the Internet. So far the results of the preliminary test are not yet satisfactory in terms of accuracy, due to the distance, but logistic constraints did not allow us to do the planned tests within at most 40-50km from CLBR. Nevertheless, the NTRIP and Management System was able to perform its designed purposes and can be used operationally for observations nearer the Reference Stations. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-6-8 2015-07-03 2015-07-03T00:00:00Z 2018-08-29T15:33:51Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.6/5840 TID:201646935 |
url |
http://hdl.handle.net/10400.6/5840 |
identifier_str_mv |
TID:201646935 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799136363127242752 |