Sequencing versus continuous granular sludge reactor for the treatment of freshwater aquaculture effluents

Detalhes bibliográficos
Autor(a) principal: Santorio, Sergio
Data de Publicação: 2021
Outros Autores: Couto, Ana T., Amorim, Catarina L., Rio, Angeles Val del, Arregui, Luz, Mosquera-Corral, Anuska, Castro, Paula M. L.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.14/34609
Resumo: Ammonium and nitrite levels in water are crucial for fish health preservation and growth maintenance in freshwater aquaculture farms, limiting water recirculation. The aim of the present work was the evaluation and comparison of two granular sludge reactors which were operated to treat freshwater aquaculture streams at laboratory-scale: an Aerobic Granular Sludge - Sequencing Batch Reactor (AGS-SBR) and a Continuous Flow Granular Reactor (CFGR). Both units were fed with a synthetic medium mimicking an aquaculture recycling water (1.9–2.9 mg N/L), with low carbon content, and operational temperature varied between 17 and 25 °C. The AGS-SBR, inoculated with mature granules from a full-scale wastewater treatment plant, achieved high carbon and ammonium removal during the 157 operational days. Even at low hydraulic retention time (HRT), varying from 474 to 237 min, ammonium removal efficiencies of approximately 87–100% were observed, with an ammonium removal rate of approximately 14.5 mg NH4+-N/(L⋅d). Partial biomass washout occurred due to the extremely low carbon and nitrogen concentrations in the feeding, which could only support the growth of a small portion of bacteria, but no major changes on the reactor removal performance were observed. The CFGR was inoculated with activated sludge and operated for 98 days. Biomass granulation occurred in 7 days, improving the settling properties due to a high up-flow velocity of 11 m/h and an applied HRT of 5 min. The reactor presented mature granules after 32 days, achieving an average diameter of 1.9 mm at day 63. The CFGR ammonium removal efficiencies were of approximately 10–20%, with ammonium removal rates of 90.0 mg NH4+-N/(L⋅d). The main biological processes taking place in the AGS-SBR were nitrification and heterotrophic growth, while in the CFGR the ammonium removal occurred only by heterotrophic assimilation, with the reactor also presenting complete and partial denitrification, which caused nitrite production. Comparing both systems, the CFGR achieved 6 times higher ammonium removal rates than the AGS-SBR, being suitable for treating extremely high flows. On the other hand, the AGS-SBR removed almost 100% of ammonium content in the wastewater, discharging a better quality effluent, less toxic for the fish but treated lower flows.
id RCAP_5a81b8e25341e5ed3b831e032e131c67
oai_identifier_str oai:repositorio.ucp.pt:10400.14/34609
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Sequencing versus continuous granular sludge reactor for the treatment of freshwater aquaculture effluentsFreshwater aquacultureAerobic granular sludgeSequencing batch reactorContinuous flow reactorNutrient removalRecirculationAmmonium and nitrite levels in water are crucial for fish health preservation and growth maintenance in freshwater aquaculture farms, limiting water recirculation. The aim of the present work was the evaluation and comparison of two granular sludge reactors which were operated to treat freshwater aquaculture streams at laboratory-scale: an Aerobic Granular Sludge - Sequencing Batch Reactor (AGS-SBR) and a Continuous Flow Granular Reactor (CFGR). Both units were fed with a synthetic medium mimicking an aquaculture recycling water (1.9–2.9 mg N/L), with low carbon content, and operational temperature varied between 17 and 25 °C. The AGS-SBR, inoculated with mature granules from a full-scale wastewater treatment plant, achieved high carbon and ammonium removal during the 157 operational days. Even at low hydraulic retention time (HRT), varying from 474 to 237 min, ammonium removal efficiencies of approximately 87–100% were observed, with an ammonium removal rate of approximately 14.5 mg NH4+-N/(L⋅d). Partial biomass washout occurred due to the extremely low carbon and nitrogen concentrations in the feeding, which could only support the growth of a small portion of bacteria, but no major changes on the reactor removal performance were observed. The CFGR was inoculated with activated sludge and operated for 98 days. Biomass granulation occurred in 7 days, improving the settling properties due to a high up-flow velocity of 11 m/h and an applied HRT of 5 min. The reactor presented mature granules after 32 days, achieving an average diameter of 1.9 mm at day 63. The CFGR ammonium removal efficiencies were of approximately 10–20%, with ammonium removal rates of 90.0 mg NH4+-N/(L⋅d). The main biological processes taking place in the AGS-SBR were nitrification and heterotrophic growth, while in the CFGR the ammonium removal occurred only by heterotrophic assimilation, with the reactor also presenting complete and partial denitrification, which caused nitrite production. Comparing both systems, the CFGR achieved 6 times higher ammonium removal rates than the AGS-SBR, being suitable for treating extremely high flows. On the other hand, the AGS-SBR removed almost 100% of ammonium content in the wastewater, discharging a better quality effluent, less toxic for the fish but treated lower flows.Veritati - Repositório Institucional da Universidade Católica PortuguesaSantorio, SergioCouto, Ana T.Amorim, Catarina L.Rio, Angeles Val delArregui, LuzMosquera-Corral, AnuskaCastro, Paula M. L.2023-06-16T00:30:32Z2021-08-012021-08-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.14/34609eng0043-135410.1016/j.watres.2021.1172938510796351434146761000681713800003info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-09-06T12:33:54Zoai:repositorio.ucp.pt:10400.14/34609Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-09-06T12:33:54Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Sequencing versus continuous granular sludge reactor for the treatment of freshwater aquaculture effluents
title Sequencing versus continuous granular sludge reactor for the treatment of freshwater aquaculture effluents
spellingShingle Sequencing versus continuous granular sludge reactor for the treatment of freshwater aquaculture effluents
Santorio, Sergio
Freshwater aquaculture
Aerobic granular sludge
Sequencing batch reactor
Continuous flow reactor
Nutrient removal
Recirculation
title_short Sequencing versus continuous granular sludge reactor for the treatment of freshwater aquaculture effluents
title_full Sequencing versus continuous granular sludge reactor for the treatment of freshwater aquaculture effluents
title_fullStr Sequencing versus continuous granular sludge reactor for the treatment of freshwater aquaculture effluents
title_full_unstemmed Sequencing versus continuous granular sludge reactor for the treatment of freshwater aquaculture effluents
title_sort Sequencing versus continuous granular sludge reactor for the treatment of freshwater aquaculture effluents
author Santorio, Sergio
author_facet Santorio, Sergio
Couto, Ana T.
Amorim, Catarina L.
Rio, Angeles Val del
Arregui, Luz
Mosquera-Corral, Anuska
Castro, Paula M. L.
author_role author
author2 Couto, Ana T.
Amorim, Catarina L.
Rio, Angeles Val del
Arregui, Luz
Mosquera-Corral, Anuska
Castro, Paula M. L.
author2_role author
author
author
author
author
author
dc.contributor.none.fl_str_mv Veritati - Repositório Institucional da Universidade Católica Portuguesa
dc.contributor.author.fl_str_mv Santorio, Sergio
Couto, Ana T.
Amorim, Catarina L.
Rio, Angeles Val del
Arregui, Luz
Mosquera-Corral, Anuska
Castro, Paula M. L.
dc.subject.por.fl_str_mv Freshwater aquaculture
Aerobic granular sludge
Sequencing batch reactor
Continuous flow reactor
Nutrient removal
Recirculation
topic Freshwater aquaculture
Aerobic granular sludge
Sequencing batch reactor
Continuous flow reactor
Nutrient removal
Recirculation
description Ammonium and nitrite levels in water are crucial for fish health preservation and growth maintenance in freshwater aquaculture farms, limiting water recirculation. The aim of the present work was the evaluation and comparison of two granular sludge reactors which were operated to treat freshwater aquaculture streams at laboratory-scale: an Aerobic Granular Sludge - Sequencing Batch Reactor (AGS-SBR) and a Continuous Flow Granular Reactor (CFGR). Both units were fed with a synthetic medium mimicking an aquaculture recycling water (1.9–2.9 mg N/L), with low carbon content, and operational temperature varied between 17 and 25 °C. The AGS-SBR, inoculated with mature granules from a full-scale wastewater treatment plant, achieved high carbon and ammonium removal during the 157 operational days. Even at low hydraulic retention time (HRT), varying from 474 to 237 min, ammonium removal efficiencies of approximately 87–100% were observed, with an ammonium removal rate of approximately 14.5 mg NH4+-N/(L⋅d). Partial biomass washout occurred due to the extremely low carbon and nitrogen concentrations in the feeding, which could only support the growth of a small portion of bacteria, but no major changes on the reactor removal performance were observed. The CFGR was inoculated with activated sludge and operated for 98 days. Biomass granulation occurred in 7 days, improving the settling properties due to a high up-flow velocity of 11 m/h and an applied HRT of 5 min. The reactor presented mature granules after 32 days, achieving an average diameter of 1.9 mm at day 63. The CFGR ammonium removal efficiencies were of approximately 10–20%, with ammonium removal rates of 90.0 mg NH4+-N/(L⋅d). The main biological processes taking place in the AGS-SBR were nitrification and heterotrophic growth, while in the CFGR the ammonium removal occurred only by heterotrophic assimilation, with the reactor also presenting complete and partial denitrification, which caused nitrite production. Comparing both systems, the CFGR achieved 6 times higher ammonium removal rates than the AGS-SBR, being suitable for treating extremely high flows. On the other hand, the AGS-SBR removed almost 100% of ammonium content in the wastewater, discharging a better quality effluent, less toxic for the fish but treated lower flows.
publishDate 2021
dc.date.none.fl_str_mv 2021-08-01
2021-08-01T00:00:00Z
2023-06-16T00:30:32Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.14/34609
url http://hdl.handle.net/10400.14/34609
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0043-1354
10.1016/j.watres.2021.117293
85107963514
34146761
000681713800003
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv mluisa.alvim@gmail.com
_version_ 1817547015901413376