A dynamic field approach to goal inference and error monitoring for human-robot interaction

Detalhes bibliográficos
Autor(a) principal: Bicho, E.
Data de Publicação: 2009
Outros Autores: Louro, Luís, Hipólito, Nzoji, Erlhagen, Wolfram
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/1822/10306
Resumo: In this paper we present results of our ongoing research on non-verbal human-robot interaction that is heavily inspired by recent experimental findings about the neuro-cognitive mechanisms supporting joint action in humans. The robot control architecture implements the joint coordination of actions and goals as a dynamic process that integrates contextual cues, shared task knowledge and the predicted outcome of the user’s motor behavior. The architecture is formalized by a coupled system of dynamic neural fields representing a distributed network of local but connected neural populations with specific functionalities. We validate the approach in a task in which a robot and a human user jointly construct a toy ’vehicle’. We show that the context-dependent mapping from action observation onto appropriate complementary actions allows the robot to cope with dynamically changing joint action situations. This includes a basic form of error monitoring and compensation.
id RCAP_5a8b7b95bdd6a71671a4d979daee640b
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/10306
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling A dynamic field approach to goal inference and error monitoring for human-robot interactionHuman-robot interactionGoal inferenceError monitoringJoint actionAnticipatory behaviorAction understandingDynamic neural fieldsIn this paper we present results of our ongoing research on non-verbal human-robot interaction that is heavily inspired by recent experimental findings about the neuro-cognitive mechanisms supporting joint action in humans. The robot control architecture implements the joint coordination of actions and goals as a dynamic process that integrates contextual cues, shared task knowledge and the predicted outcome of the user’s motor behavior. The architecture is formalized by a coupled system of dynamic neural fields representing a distributed network of local but connected neural populations with specific functionalities. We validate the approach in a task in which a robot and a human user jointly construct a toy ’vehicle’. We show that the context-dependent mapping from action observation onto appropriate complementary actions allows the robot to cope with dynamically changing joint action situations. This includes a basic form of error monitoring and compensation.Fundação para a Ciência e a Tecnologia (FCT) - POCI/V.5/A0119/2005, CONC-REEQ/17/2001Universidade do MinhoBicho, E.Louro, LuísHipólito, NzojiErlhagen, Wolfram20092009-01-01T00:00:00Zconference paperinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/1822/10306engDAUTENHAHN, E., ed. lit. – “AISB Convention 2009 on Adaptive & Emergent Behaviour & Complex Systems : proceedings of the International Symposium on New Frontiers in Human-Robot Interaction, 1, Edinburgh, Scotland, 2009”. [S.l. : s.n, 2009]. p. 31-37.1902956850info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-05-11T05:04:25Zoai:repositorium.sdum.uminho.pt:1822/10306Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-05-11T05:04:25Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv A dynamic field approach to goal inference and error monitoring for human-robot interaction
title A dynamic field approach to goal inference and error monitoring for human-robot interaction
spellingShingle A dynamic field approach to goal inference and error monitoring for human-robot interaction
Bicho, E.
Human-robot interaction
Goal inference
Error monitoring
Joint action
Anticipatory behavior
Action understanding
Dynamic neural fields
title_short A dynamic field approach to goal inference and error monitoring for human-robot interaction
title_full A dynamic field approach to goal inference and error monitoring for human-robot interaction
title_fullStr A dynamic field approach to goal inference and error monitoring for human-robot interaction
title_full_unstemmed A dynamic field approach to goal inference and error monitoring for human-robot interaction
title_sort A dynamic field approach to goal inference and error monitoring for human-robot interaction
author Bicho, E.
author_facet Bicho, E.
Louro, Luís
Hipólito, Nzoji
Erlhagen, Wolfram
author_role author
author2 Louro, Luís
Hipólito, Nzoji
Erlhagen, Wolfram
author2_role author
author
author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Bicho, E.
Louro, Luís
Hipólito, Nzoji
Erlhagen, Wolfram
dc.subject.por.fl_str_mv Human-robot interaction
Goal inference
Error monitoring
Joint action
Anticipatory behavior
Action understanding
Dynamic neural fields
topic Human-robot interaction
Goal inference
Error monitoring
Joint action
Anticipatory behavior
Action understanding
Dynamic neural fields
description In this paper we present results of our ongoing research on non-verbal human-robot interaction that is heavily inspired by recent experimental findings about the neuro-cognitive mechanisms supporting joint action in humans. The robot control architecture implements the joint coordination of actions and goals as a dynamic process that integrates contextual cues, shared task knowledge and the predicted outcome of the user’s motor behavior. The architecture is formalized by a coupled system of dynamic neural fields representing a distributed network of local but connected neural populations with specific functionalities. We validate the approach in a task in which a robot and a human user jointly construct a toy ’vehicle’. We show that the context-dependent mapping from action observation onto appropriate complementary actions allows the robot to cope with dynamically changing joint action situations. This includes a basic form of error monitoring and compensation.
publishDate 2009
dc.date.none.fl_str_mv 2009
2009-01-01T00:00:00Z
dc.type.driver.fl_str_mv conference paper
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1822/10306
url http://hdl.handle.net/1822/10306
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv DAUTENHAHN, E., ed. lit. – “AISB Convention 2009 on Adaptive & Emergent Behaviour & Complex Systems : proceedings of the International Symposium on New Frontiers in Human-Robot Interaction, 1, Edinburgh, Scotland, 2009”. [S.l. : s.n, 2009]. p. 31-37.
1902956850
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv mluisa.alvim@gmail.com
_version_ 1817544506978861056