A dynamic field approach to goal inference and error monitoring for human-robot interaction
Autor(a) principal: | |
---|---|
Data de Publicação: | 2009 |
Outros Autores: | , , |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/1822/10306 |
Resumo: | In this paper we present results of our ongoing research on non-verbal human-robot interaction that is heavily inspired by recent experimental findings about the neuro-cognitive mechanisms supporting joint action in humans. The robot control architecture implements the joint coordination of actions and goals as a dynamic process that integrates contextual cues, shared task knowledge and the predicted outcome of the user’s motor behavior. The architecture is formalized by a coupled system of dynamic neural fields representing a distributed network of local but connected neural populations with specific functionalities. We validate the approach in a task in which a robot and a human user jointly construct a toy ’vehicle’. We show that the context-dependent mapping from action observation onto appropriate complementary actions allows the robot to cope with dynamically changing joint action situations. This includes a basic form of error monitoring and compensation. |
id |
RCAP_5a8b7b95bdd6a71671a4d979daee640b |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/10306 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
A dynamic field approach to goal inference and error monitoring for human-robot interactionHuman-robot interactionGoal inferenceError monitoringJoint actionAnticipatory behaviorAction understandingDynamic neural fieldsIn this paper we present results of our ongoing research on non-verbal human-robot interaction that is heavily inspired by recent experimental findings about the neuro-cognitive mechanisms supporting joint action in humans. The robot control architecture implements the joint coordination of actions and goals as a dynamic process that integrates contextual cues, shared task knowledge and the predicted outcome of the user’s motor behavior. The architecture is formalized by a coupled system of dynamic neural fields representing a distributed network of local but connected neural populations with specific functionalities. We validate the approach in a task in which a robot and a human user jointly construct a toy ’vehicle’. We show that the context-dependent mapping from action observation onto appropriate complementary actions allows the robot to cope with dynamically changing joint action situations. This includes a basic form of error monitoring and compensation.Fundação para a Ciência e a Tecnologia (FCT) - POCI/V.5/A0119/2005, CONC-REEQ/17/2001Universidade do MinhoBicho, E.Louro, LuísHipólito, NzojiErlhagen, Wolfram20092009-01-01T00:00:00Zconference paperinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/1822/10306engDAUTENHAHN, E., ed. lit. – “AISB Convention 2009 on Adaptive & Emergent Behaviour & Complex Systems : proceedings of the International Symposium on New Frontiers in Human-Robot Interaction, 1, Edinburgh, Scotland, 2009”. [S.l. : s.n, 2009]. p. 31-37.1902956850info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-05-11T05:04:25Zoai:repositorium.sdum.uminho.pt:1822/10306Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-05-11T05:04:25Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
A dynamic field approach to goal inference and error monitoring for human-robot interaction |
title |
A dynamic field approach to goal inference and error monitoring for human-robot interaction |
spellingShingle |
A dynamic field approach to goal inference and error monitoring for human-robot interaction Bicho, E. Human-robot interaction Goal inference Error monitoring Joint action Anticipatory behavior Action understanding Dynamic neural fields |
title_short |
A dynamic field approach to goal inference and error monitoring for human-robot interaction |
title_full |
A dynamic field approach to goal inference and error monitoring for human-robot interaction |
title_fullStr |
A dynamic field approach to goal inference and error monitoring for human-robot interaction |
title_full_unstemmed |
A dynamic field approach to goal inference and error monitoring for human-robot interaction |
title_sort |
A dynamic field approach to goal inference and error monitoring for human-robot interaction |
author |
Bicho, E. |
author_facet |
Bicho, E. Louro, Luís Hipólito, Nzoji Erlhagen, Wolfram |
author_role |
author |
author2 |
Louro, Luís Hipólito, Nzoji Erlhagen, Wolfram |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Bicho, E. Louro, Luís Hipólito, Nzoji Erlhagen, Wolfram |
dc.subject.por.fl_str_mv |
Human-robot interaction Goal inference Error monitoring Joint action Anticipatory behavior Action understanding Dynamic neural fields |
topic |
Human-robot interaction Goal inference Error monitoring Joint action Anticipatory behavior Action understanding Dynamic neural fields |
description |
In this paper we present results of our ongoing research on non-verbal human-robot interaction that is heavily inspired by recent experimental findings about the neuro-cognitive mechanisms supporting joint action in humans. The robot control architecture implements the joint coordination of actions and goals as a dynamic process that integrates contextual cues, shared task knowledge and the predicted outcome of the user’s motor behavior. The architecture is formalized by a coupled system of dynamic neural fields representing a distributed network of local but connected neural populations with specific functionalities. We validate the approach in a task in which a robot and a human user jointly construct a toy ’vehicle’. We show that the context-dependent mapping from action observation onto appropriate complementary actions allows the robot to cope with dynamically changing joint action situations. This includes a basic form of error monitoring and compensation. |
publishDate |
2009 |
dc.date.none.fl_str_mv |
2009 2009-01-01T00:00:00Z |
dc.type.driver.fl_str_mv |
conference paper |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/1822/10306 |
url |
http://hdl.handle.net/1822/10306 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
DAUTENHAHN, E., ed. lit. – “AISB Convention 2009 on Adaptive & Emergent Behaviour & Complex Systems : proceedings of the International Symposium on New Frontiers in Human-Robot Interaction, 1, Edinburgh, Scotland, 2009”. [S.l. : s.n, 2009]. p. 31-37. 1902956850 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
mluisa.alvim@gmail.com |
_version_ |
1817544506978861056 |