Electroconductive PEDOT nanoparticle integrated scaffolds for spinal cord tissue repair

Detalhes bibliográficos
Autor(a) principal: Serafin, A.
Data de Publicação: 2022
Outros Autores: Rubio, M. C., Carsi, M., Ortiz-Serna, P., Sanchis, M. J., Garg, A. K., Oliveira, Joaquim M., Koffler, J., Collins, M. N.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: https://hdl.handle.net/1822/81718
Resumo: Background: Hostile environment around the lesion site following spinal cord injury (SCI) prevents the re-establishment of neuronal tracks, thus significantly limiting the regenerative capability. Electroconductive scaffolds are emerging as a promising option for SCI repair, though currently available conductive polymers such as polymer poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) present poor biofunctionality and biocompatibility, thus limiting their effective use in SCI tissue engineering (TE) treatment strategies. Methods: PEDOT NPs were synthesized via chemical oxidation polymerization in miniemulsion. The conductive PEDOT NPs were incorporated with gelatin and hyaluronic acid (HA) to create gel:HA:PEDOT-NPs scaffolds. Morphological analysis of both PEDOT NPs and scaffolds was conducted via SEM. Further characterisation included dielectric constant and permittivity variances mapped against morphological changes after crosslinking, Young’s modulus, FTIR, DLS, swelling studies, rheology, in-vitro, and in-vivo biocompatibility studies were also conducted. Results: Incorporation of PEDOT NPs increased the conductivity of scaffolds to 8.3 × 10–4 ± 8.1 × 10–5 S/cm. The compressive modulus of the scaffold was tailored to match the native spinal cord at 1.2 ± 0.2 MPa, along with controlled porosity. Rheological studies of the hydrogel showed excellent 3D shear-thinning printing capabilities and shape fidelity post-printing. In-vitro studies showed the scaffolds are cytocompatible and an in-vivo assessment in a rat SCI lesion model shows glial fibrillary acidic protein (GFAP) upregulation not directly in contact with the lesion/implantation site, with diminished astrocyte reactivity. Decreased levels of macrophage and microglia reactivity at the implant site is also observed. This positively influences the re-establishment of signals and initiation of healing mechanisms. Observation of axon migration towards the scaffold can be attributed to immunomodulatory properties of HA in the scaffold caused by a controlled inflammatory response. HA limits astrocyte activation through its CD44 receptors and therefore limits scar formation. This allows for a superior axonal migration and growth towards the targeted implantation site through the provision of a stimulating microenvironment for regeneration. Conclusions: Based on these results, the incorporation of PEDOT NPs into Gel:HA biomaterial scaffolds enhances not only the conductive capabilities of the material, but also the provision of a healing environment around lesions in SCI. Hence, gel:HA:PEDOT-NPs scaffolds are a promising TE option for stimulating regeneration for SCI.
id RCAP_5b005e19fc84ea201fa7b18047c52434
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/81718
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Electroconductive PEDOT nanoparticle integrated scaffolds for spinal cord tissue repairNanoparticlesPEDOTSCIElectroconductive scaffoldsPEDOT nanoparticlesSpinal cord injuryTissue engineeringScience & TechnologyBackground: Hostile environment around the lesion site following spinal cord injury (SCI) prevents the re-establishment of neuronal tracks, thus significantly limiting the regenerative capability. Electroconductive scaffolds are emerging as a promising option for SCI repair, though currently available conductive polymers such as polymer poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) present poor biofunctionality and biocompatibility, thus limiting their effective use in SCI tissue engineering (TE) treatment strategies. Methods: PEDOT NPs were synthesized via chemical oxidation polymerization in miniemulsion. The conductive PEDOT NPs were incorporated with gelatin and hyaluronic acid (HA) to create gel:HA:PEDOT-NPs scaffolds. Morphological analysis of both PEDOT NPs and scaffolds was conducted via SEM. Further characterisation included dielectric constant and permittivity variances mapped against morphological changes after crosslinking, Young’s modulus, FTIR, DLS, swelling studies, rheology, in-vitro, and in-vivo biocompatibility studies were also conducted. Results: Incorporation of PEDOT NPs increased the conductivity of scaffolds to 8.3 × 10–4 ± 8.1 × 10–5 S/cm. The compressive modulus of the scaffold was tailored to match the native spinal cord at 1.2 ± 0.2 MPa, along with controlled porosity. Rheological studies of the hydrogel showed excellent 3D shear-thinning printing capabilities and shape fidelity post-printing. In-vitro studies showed the scaffolds are cytocompatible and an in-vivo assessment in a rat SCI lesion model shows glial fibrillary acidic protein (GFAP) upregulation not directly in contact with the lesion/implantation site, with diminished astrocyte reactivity. Decreased levels of macrophage and microglia reactivity at the implant site is also observed. This positively influences the re-establishment of signals and initiation of healing mechanisms. Observation of axon migration towards the scaffold can be attributed to immunomodulatory properties of HA in the scaffold caused by a controlled inflammatory response. HA limits astrocyte activation through its CD44 receptors and therefore limits scar formation. This allows for a superior axonal migration and growth towards the targeted implantation site through the provision of a stimulating microenvironment for regeneration. Conclusions: Based on these results, the incorporation of PEDOT NPs into Gel:HA biomaterial scaffolds enhances not only the conductive capabilities of the material, but also the provision of a healing environment around lesions in SCI. Hence, gel:HA:PEDOT-NPs scaffolds are a promising TE option for stimulating regeneration for SCI.The authors would like to thank the funding provided by the Irish Research Council through the Irish Research Council Enterprise Partnership Scheme with Johnson and Johnson (EPSPG/2020/78), as well as the Irish Fulbright Commission.Springer NatureUniversidade do MinhoSerafin, A.Rubio, M. C.Carsi, M.Ortiz-Serna, P.Sanchis, M. J.Garg, A. K.Oliveira, Joaquim M.Koffler, J.Collins, M. N.20222022-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/1822/81718engSerafin, A., Rubio, M.C., Carsi, M. et al. Electroconductive PEDOT nanoparticle integrated scaffolds for spinal cord tissue repair. Biomater Res 26, 63 (2022). https://doi.org/10.1186/s40824-022-00310-52055-712410.1186/s40824-022-00310-5https://biomaterialsres.biomedcentral.com/articles/10.1186/s40824-022-00310-5info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-12-23T01:28:33Zoai:repositorium.sdum.uminho.pt:1822/81718Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T18:56:42.352510Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Electroconductive PEDOT nanoparticle integrated scaffolds for spinal cord tissue repair
title Electroconductive PEDOT nanoparticle integrated scaffolds for spinal cord tissue repair
spellingShingle Electroconductive PEDOT nanoparticle integrated scaffolds for spinal cord tissue repair
Serafin, A.
Nanoparticles
PEDOT
SCI
Electroconductive scaffolds
PEDOT nanoparticles
Spinal cord injury
Tissue engineering
Science & Technology
title_short Electroconductive PEDOT nanoparticle integrated scaffolds for spinal cord tissue repair
title_full Electroconductive PEDOT nanoparticle integrated scaffolds for spinal cord tissue repair
title_fullStr Electroconductive PEDOT nanoparticle integrated scaffolds for spinal cord tissue repair
title_full_unstemmed Electroconductive PEDOT nanoparticle integrated scaffolds for spinal cord tissue repair
title_sort Electroconductive PEDOT nanoparticle integrated scaffolds for spinal cord tissue repair
author Serafin, A.
author_facet Serafin, A.
Rubio, M. C.
Carsi, M.
Ortiz-Serna, P.
Sanchis, M. J.
Garg, A. K.
Oliveira, Joaquim M.
Koffler, J.
Collins, M. N.
author_role author
author2 Rubio, M. C.
Carsi, M.
Ortiz-Serna, P.
Sanchis, M. J.
Garg, A. K.
Oliveira, Joaquim M.
Koffler, J.
Collins, M. N.
author2_role author
author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Serafin, A.
Rubio, M. C.
Carsi, M.
Ortiz-Serna, P.
Sanchis, M. J.
Garg, A. K.
Oliveira, Joaquim M.
Koffler, J.
Collins, M. N.
dc.subject.por.fl_str_mv Nanoparticles
PEDOT
SCI
Electroconductive scaffolds
PEDOT nanoparticles
Spinal cord injury
Tissue engineering
Science & Technology
topic Nanoparticles
PEDOT
SCI
Electroconductive scaffolds
PEDOT nanoparticles
Spinal cord injury
Tissue engineering
Science & Technology
description Background: Hostile environment around the lesion site following spinal cord injury (SCI) prevents the re-establishment of neuronal tracks, thus significantly limiting the regenerative capability. Electroconductive scaffolds are emerging as a promising option for SCI repair, though currently available conductive polymers such as polymer poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) present poor biofunctionality and biocompatibility, thus limiting their effective use in SCI tissue engineering (TE) treatment strategies. Methods: PEDOT NPs were synthesized via chemical oxidation polymerization in miniemulsion. The conductive PEDOT NPs were incorporated with gelatin and hyaluronic acid (HA) to create gel:HA:PEDOT-NPs scaffolds. Morphological analysis of both PEDOT NPs and scaffolds was conducted via SEM. Further characterisation included dielectric constant and permittivity variances mapped against morphological changes after crosslinking, Young’s modulus, FTIR, DLS, swelling studies, rheology, in-vitro, and in-vivo biocompatibility studies were also conducted. Results: Incorporation of PEDOT NPs increased the conductivity of scaffolds to 8.3 × 10–4 ± 8.1 × 10–5 S/cm. The compressive modulus of the scaffold was tailored to match the native spinal cord at 1.2 ± 0.2 MPa, along with controlled porosity. Rheological studies of the hydrogel showed excellent 3D shear-thinning printing capabilities and shape fidelity post-printing. In-vitro studies showed the scaffolds are cytocompatible and an in-vivo assessment in a rat SCI lesion model shows glial fibrillary acidic protein (GFAP) upregulation not directly in contact with the lesion/implantation site, with diminished astrocyte reactivity. Decreased levels of macrophage and microglia reactivity at the implant site is also observed. This positively influences the re-establishment of signals and initiation of healing mechanisms. Observation of axon migration towards the scaffold can be attributed to immunomodulatory properties of HA in the scaffold caused by a controlled inflammatory response. HA limits astrocyte activation through its CD44 receptors and therefore limits scar formation. This allows for a superior axonal migration and growth towards the targeted implantation site through the provision of a stimulating microenvironment for regeneration. Conclusions: Based on these results, the incorporation of PEDOT NPs into Gel:HA biomaterial scaffolds enhances not only the conductive capabilities of the material, but also the provision of a healing environment around lesions in SCI. Hence, gel:HA:PEDOT-NPs scaffolds are a promising TE option for stimulating regeneration for SCI.
publishDate 2022
dc.date.none.fl_str_mv 2022
2022-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/1822/81718
url https://hdl.handle.net/1822/81718
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Serafin, A., Rubio, M.C., Carsi, M. et al. Electroconductive PEDOT nanoparticle integrated scaffolds for spinal cord tissue repair. Biomater Res 26, 63 (2022). https://doi.org/10.1186/s40824-022-00310-5
2055-7124
10.1186/s40824-022-00310-5
https://biomaterialsres.biomedcentral.com/articles/10.1186/s40824-022-00310-5
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Springer Nature
publisher.none.fl_str_mv Springer Nature
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799132354150662144