Effects of light polarization and waves slope statistics on the reflectance factor of the sea surface

Detalhes bibliográficos
Autor(a) principal: D'Alimonte, Davide
Data de Publicação: 2016
Outros Autores: Kajiyama, Tamito
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.1/9512
Resumo: Above-water radiometry depends on estimates of the reflectance factor rho of the sea surface to compute the in situ water-leaving radiance. The Monte Carlo code for ocean color simulations MOX is used in this study to analyze the effect of different environmental components on r values. A first aspect is examining the reflectance factor without and by accounting for the sky-radiance polarization. The influence of the sea-surface statistics at discrete grid points is then considered by presenting a new scheme to define the variance of the waves slope. Results at different sun elevations and sensor orientations indicate that the light polarization effect on r simulations reduces from similar to 17 to similar to 10% when the wind speed increases from 0 to 14ms(-1). An opposite tendency characterizes the modeling of the sea-surface slope variance, with r differences up to similar to 12% at a wind speed of 10ms(-1). The joint effect of polarization and the the sea-surface statistics displays a less systematic dependence on the wind speed, with differences in the range similar to 13 to similar to 18%. The r changes due to the light polarization and the variance of the waves slope become more relevant at sky-viewing geometries respectively lower and higher than 40 degrees with respect to the zenith. An overall compensation of positive and negative offsets due to light polarization is finally documented when considering different sun elevations. These results address additional investigations which, by combining the modeling and experimental components of marine optics, better evaluate specific measurement protocols for collecting above-water radiometric data in the field. (C) 2016 Optical Society of America
id RCAP_5b1263241353a94dd3aa7a75adfc7f7d
oai_identifier_str oai:sapientia.ualg.pt:10400.1/9512
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Effects of light polarization and waves slope statistics on the reflectance factor of the sea surfaceAbove-water radiometry depends on estimates of the reflectance factor rho of the sea surface to compute the in situ water-leaving radiance. The Monte Carlo code for ocean color simulations MOX is used in this study to analyze the effect of different environmental components on r values. A first aspect is examining the reflectance factor without and by accounting for the sky-radiance polarization. The influence of the sea-surface statistics at discrete grid points is then considered by presenting a new scheme to define the variance of the waves slope. Results at different sun elevations and sensor orientations indicate that the light polarization effect on r simulations reduces from similar to 17 to similar to 10% when the wind speed increases from 0 to 14ms(-1). An opposite tendency characterizes the modeling of the sea-surface slope variance, with r differences up to similar to 12% at a wind speed of 10ms(-1). The joint effect of polarization and the the sea-surface statistics displays a less systematic dependence on the wind speed, with differences in the range similar to 13 to similar to 18%. The r changes due to the light polarization and the variance of the waves slope become more relevant at sky-viewing geometries respectively lower and higher than 40 degrees with respect to the zenith. An overall compensation of positive and negative offsets due to light polarization is finally documented when considering different sun elevations. These results address additional investigations which, by combining the modeling and experimental components of marine optics, better evaluate specific measurement protocols for collecting above-water radiometric data in the field. (C) 2016 Optical Society of AmericaSapientiaD'Alimonte, DavideKajiyama, Tamito2017-04-07T15:56:44Z2016-042016-04-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.1/9512eng1094-408710.1364/OE.24.007922info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-24T10:20:59Zoai:sapientia.ualg.pt:10400.1/9512Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:01:26.463663Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Effects of light polarization and waves slope statistics on the reflectance factor of the sea surface
title Effects of light polarization and waves slope statistics on the reflectance factor of the sea surface
spellingShingle Effects of light polarization and waves slope statistics on the reflectance factor of the sea surface
D'Alimonte, Davide
title_short Effects of light polarization and waves slope statistics on the reflectance factor of the sea surface
title_full Effects of light polarization and waves slope statistics on the reflectance factor of the sea surface
title_fullStr Effects of light polarization and waves slope statistics on the reflectance factor of the sea surface
title_full_unstemmed Effects of light polarization and waves slope statistics on the reflectance factor of the sea surface
title_sort Effects of light polarization and waves slope statistics on the reflectance factor of the sea surface
author D'Alimonte, Davide
author_facet D'Alimonte, Davide
Kajiyama, Tamito
author_role author
author2 Kajiyama, Tamito
author2_role author
dc.contributor.none.fl_str_mv Sapientia
dc.contributor.author.fl_str_mv D'Alimonte, Davide
Kajiyama, Tamito
description Above-water radiometry depends on estimates of the reflectance factor rho of the sea surface to compute the in situ water-leaving radiance. The Monte Carlo code for ocean color simulations MOX is used in this study to analyze the effect of different environmental components on r values. A first aspect is examining the reflectance factor without and by accounting for the sky-radiance polarization. The influence of the sea-surface statistics at discrete grid points is then considered by presenting a new scheme to define the variance of the waves slope. Results at different sun elevations and sensor orientations indicate that the light polarization effect on r simulations reduces from similar to 17 to similar to 10% when the wind speed increases from 0 to 14ms(-1). An opposite tendency characterizes the modeling of the sea-surface slope variance, with r differences up to similar to 12% at a wind speed of 10ms(-1). The joint effect of polarization and the the sea-surface statistics displays a less systematic dependence on the wind speed, with differences in the range similar to 13 to similar to 18%. The r changes due to the light polarization and the variance of the waves slope become more relevant at sky-viewing geometries respectively lower and higher than 40 degrees with respect to the zenith. An overall compensation of positive and negative offsets due to light polarization is finally documented when considering different sun elevations. These results address additional investigations which, by combining the modeling and experimental components of marine optics, better evaluate specific measurement protocols for collecting above-water radiometric data in the field. (C) 2016 Optical Society of America
publishDate 2016
dc.date.none.fl_str_mv 2016-04
2016-04-01T00:00:00Z
2017-04-07T15:56:44Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.1/9512
url http://hdl.handle.net/10400.1/9512
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 1094-4087
10.1364/OE.24.007922
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799133243907244032