Gesture spotting from IMU and EMG data for human-robot interaction

Detalhes bibliográficos
Autor(a) principal: Lopes, João Diogo Faria
Data de Publicação: 2016
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10316/37022
Resumo: Gesture spotting is an important factor in the development of human-machine interaction modalities, which can be improved by reliable motion segmentation methods. This work uses a gesture segmentation method in order to distinguish dynamic from static motions, using IMU and EMG sensor modalities. The performance of the sensors individually as well as their combination was evaluated, with thresholds and window size manually defined for each sensor modality, through 60 sequences performed by 6 users. The method which used the IMU alone obtained the best results in regards to the total segmentation error (11.88%), in comparison to the other two methods (EMG = 43.75% e IMU+EMG= 12.92%). When considering gestures which only contain arm movement, the best error obtained was 1.11% by the IMU method (EMG = 58.89% e IMU+EMG= 7.22%). However, when considering gestures which have only hand motion, the combination of the 2 sensors achieved the best performance, with an error of 10% (IMU = 30.83% e EMG= 17.5%). Results of the sensor fusion modality varied greatly depending on user, with segmentation errors varying between 1.25% and 26.25%, where users with more training obtained better results. Application of different filtering method to the EMG data as a solution to the limb position resulted in an error for the combination of sensors of 9.17%, with all gestures performing similarly or better than the IMU method but with an increased number of non-detected gestures.
id RCAP_5b3b039da57c96f5b8e74878414a4db1
oai_identifier_str oai:estudogeral.uc.pt:10316/37022
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Gesture spotting from IMU and EMG data for human-robot interactionSegmentação de gestos a partir de dados IMU e EMG para interação homem robôMovimentoInteraçao homem-máquinaGestosEMGDomínio/Área Científica::Engenharia e Tecnologia::Engenharia MecânicaGesture spotting is an important factor in the development of human-machine interaction modalities, which can be improved by reliable motion segmentation methods. This work uses a gesture segmentation method in order to distinguish dynamic from static motions, using IMU and EMG sensor modalities. The performance of the sensors individually as well as their combination was evaluated, with thresholds and window size manually defined for each sensor modality, through 60 sequences performed by 6 users. The method which used the IMU alone obtained the best results in regards to the total segmentation error (11.88%), in comparison to the other two methods (EMG = 43.75% e IMU+EMG= 12.92%). When considering gestures which only contain arm movement, the best error obtained was 1.11% by the IMU method (EMG = 58.89% e IMU+EMG= 7.22%). However, when considering gestures which have only hand motion, the combination of the 2 sensors achieved the best performance, with an error of 10% (IMU = 30.83% e EMG= 17.5%). Results of the sensor fusion modality varied greatly depending on user, with segmentation errors varying between 1.25% and 26.25%, where users with more training obtained better results. Application of different filtering method to the EMG data as a solution to the limb position resulted in an error for the combination of sensors of 9.17%, with all gestures performing similarly or better than the IMU method but with an increased number of non-detected gestures.O reconhecimento de gestos é um fator importante no desenvolvimento de modalidades para interação homem-máquina, que podem ser melhoradas através de métodos fiáveis de segmentação de movimento. Esta tese usou um método de segmentação de modo a distinguir movimentos dinâmicos de estáticos, através do uso de sensores IMU e EMG. Foi avaliado o desempenho dos sensores individualmente e em combinação, com thresholds e tamanho de janela calculados manualmente para cada modalidade, através de 60 testes realizados por 6 utilizadores. O método que usou o IMU isoladamente obteve melhores resultados em relação ao erro total de segmentação (11,88%), comparativamente aos outros dois métodos (EMG = 43,75% e IMU+EMG= 12,92%). Quando considerámos os gestos que continham apenas movimento de braço, o melhor erro obtido foi de 1,11% para o método de IMU (EMG = 58,89% e IMU+EMG= 7,22%). No entanto, quando avaliámos os gestos apenas com movimento da mão a combinação dos dois sensores atingiu o melhor desempenho, com um erro de 10% (IMU = 30,83% e EMG= 17,5%). Os resultados da metodologia de combinação de sensores variaram consideravelmente dependendo do utilizador, com erros de segmentação entre 1,25% e 26,25%, em que os utilizadores com maior treino obtiveram os melhores resultados. A utilização de um método de filtragem diferente aos dados do sensor EMG, como solução para o problema da posição do membro, resultou em um erro para a combinação de sensores de 9,17%, com todos os gestos a terem um desempenho semelhante ou superior em comparação ao método que usou o IMU, mas com um número mais avultado de gestos não detetados.2016-09info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesishttp://hdl.handle.net/10316/37022http://hdl.handle.net/10316/37022engLopes, João Diogo Fariainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2022-05-25T04:00:42Zoai:estudogeral.uc.pt:10316/37022Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:58:47.701633Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Gesture spotting from IMU and EMG data for human-robot interaction
Segmentação de gestos a partir de dados IMU e EMG para interação homem robô
title Gesture spotting from IMU and EMG data for human-robot interaction
spellingShingle Gesture spotting from IMU and EMG data for human-robot interaction
Lopes, João Diogo Faria
Movimento
Interaçao homem-máquina
Gestos
EMG
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Mecânica
title_short Gesture spotting from IMU and EMG data for human-robot interaction
title_full Gesture spotting from IMU and EMG data for human-robot interaction
title_fullStr Gesture spotting from IMU and EMG data for human-robot interaction
title_full_unstemmed Gesture spotting from IMU and EMG data for human-robot interaction
title_sort Gesture spotting from IMU and EMG data for human-robot interaction
author Lopes, João Diogo Faria
author_facet Lopes, João Diogo Faria
author_role author
dc.contributor.author.fl_str_mv Lopes, João Diogo Faria
dc.subject.por.fl_str_mv Movimento
Interaçao homem-máquina
Gestos
EMG
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Mecânica
topic Movimento
Interaçao homem-máquina
Gestos
EMG
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Mecânica
description Gesture spotting is an important factor in the development of human-machine interaction modalities, which can be improved by reliable motion segmentation methods. This work uses a gesture segmentation method in order to distinguish dynamic from static motions, using IMU and EMG sensor modalities. The performance of the sensors individually as well as their combination was evaluated, with thresholds and window size manually defined for each sensor modality, through 60 sequences performed by 6 users. The method which used the IMU alone obtained the best results in regards to the total segmentation error (11.88%), in comparison to the other two methods (EMG = 43.75% e IMU+EMG= 12.92%). When considering gestures which only contain arm movement, the best error obtained was 1.11% by the IMU method (EMG = 58.89% e IMU+EMG= 7.22%). However, when considering gestures which have only hand motion, the combination of the 2 sensors achieved the best performance, with an error of 10% (IMU = 30.83% e EMG= 17.5%). Results of the sensor fusion modality varied greatly depending on user, with segmentation errors varying between 1.25% and 26.25%, where users with more training obtained better results. Application of different filtering method to the EMG data as a solution to the limb position resulted in an error for the combination of sensors of 9.17%, with all gestures performing similarly or better than the IMU method but with an increased number of non-detected gestures.
publishDate 2016
dc.date.none.fl_str_mv 2016-09
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10316/37022
http://hdl.handle.net/10316/37022
url http://hdl.handle.net/10316/37022
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799133880154849280