Deep Learning para BigData

Detalhes bibliográficos
Autor(a) principal: Correia, Filipe José Ribeiro
Data de Publicação: 2021
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.22/19365
Resumo: We live in a world where data is becoming increasingly valuable and increasingly abundant in volume. Every company produces data, be it from sales, sensors, and various other sources. Since the dawn of the smartphone, virtually every person in the world is connected to the internet and contributes to data generation. Social networks are big contributors to this Big Data boom. How do we extract insight from such a rich data environment? Is Deep Learning capable of circumventing Big Data’s challenges? This is what we intend to understand. To reach a conclusion, Social Network data is used as a case study for predicting sentiment changes in the Stock Market. The objective of this dissertation is to develop a computational study and analyse its performance. The outputs will contribute to understand Deep Learning’s usage with Big Data and how it acts in Sentiment analysis.
id RCAP_5b7d8c91404492148610ca6b06d0710a
oai_identifier_str oai:recipp.ipp.pt:10400.22/19365
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Deep Learning para BigDataDeep LearningBig DataNeural NetworkStock DataFinancial MarketsSocial NetworksRedes NeuronaisDados de açõesMercados FinanceirosRedes SociaisWe live in a world where data is becoming increasingly valuable and increasingly abundant in volume. Every company produces data, be it from sales, sensors, and various other sources. Since the dawn of the smartphone, virtually every person in the world is connected to the internet and contributes to data generation. Social networks are big contributors to this Big Data boom. How do we extract insight from such a rich data environment? Is Deep Learning capable of circumventing Big Data’s challenges? This is what we intend to understand. To reach a conclusion, Social Network data is used as a case study for predicting sentiment changes in the Stock Market. The objective of this dissertation is to develop a computational study and analyse its performance. The outputs will contribute to understand Deep Learning’s usage with Big Data and how it acts in Sentiment analysis.Vivemos num mundo onde dados são cada vez mais valiosos e abundantes. Todas as empresas produzem dados, sejam eles provenientes de valores de vendas, parâmetros de sensores bem como de outras diversas fontes. Desde que os smartphones se tornaram pessoais, o mundo tornou-se mais conectado, já que virtualmente todas as pessoas passaram a ter a internet na ponta dos dedos. Esta explosão tecnológica foi acompanhada por uma explosão de dados. As redes sociais têm um grande contributo para a quantidade de dados produzida. Mas como se analisam estes dados? Será que Deep Learning poderá dar a volta aos desafios que Big Data traz inerentemente? É isso se pretende perceber. Para chegar a uma conclusão, foi utilizado um caso de estudo de redes sociais para previsão de alterações nas ações de mercados financeiros relacionadas com as opiniões dos utilizadores destas. O objetivo desta dissertação é o desenvolvimento de um estudo computacional e a análise da sua performance. Os resultados contribuirão para entender o uso de Deep Learning com Big Data, com especial foco em análise de sentimento. The objective of this dissertation is to develop a computational study and analyse its performance. The outputs will contribute to understand Deep Learning’s usage with Big Data and how it acts in Sentiment analysis.Pereira, Ana Maria Dias MadureiraRepositório Científico do Instituto Politécnico do PortoCorreia, Filipe José Ribeiro2022-01-07T16:33:58Z20212021-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10400.22/19365TID:202796310enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-03-13T13:13:57Zoai:recipp.ipp.pt:10400.22/19365Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T17:39:28.682877Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Deep Learning para BigData
title Deep Learning para BigData
spellingShingle Deep Learning para BigData
Correia, Filipe José Ribeiro
Deep Learning
Big Data
Neural Network
Stock Data
Financial Markets
Social Networks
Redes Neuronais
Dados de ações
Mercados Financeiros
Redes Sociais
title_short Deep Learning para BigData
title_full Deep Learning para BigData
title_fullStr Deep Learning para BigData
title_full_unstemmed Deep Learning para BigData
title_sort Deep Learning para BigData
author Correia, Filipe José Ribeiro
author_facet Correia, Filipe José Ribeiro
author_role author
dc.contributor.none.fl_str_mv Pereira, Ana Maria Dias Madureira
Repositório Científico do Instituto Politécnico do Porto
dc.contributor.author.fl_str_mv Correia, Filipe José Ribeiro
dc.subject.por.fl_str_mv Deep Learning
Big Data
Neural Network
Stock Data
Financial Markets
Social Networks
Redes Neuronais
Dados de ações
Mercados Financeiros
Redes Sociais
topic Deep Learning
Big Data
Neural Network
Stock Data
Financial Markets
Social Networks
Redes Neuronais
Dados de ações
Mercados Financeiros
Redes Sociais
description We live in a world where data is becoming increasingly valuable and increasingly abundant in volume. Every company produces data, be it from sales, sensors, and various other sources. Since the dawn of the smartphone, virtually every person in the world is connected to the internet and contributes to data generation. Social networks are big contributors to this Big Data boom. How do we extract insight from such a rich data environment? Is Deep Learning capable of circumventing Big Data’s challenges? This is what we intend to understand. To reach a conclusion, Social Network data is used as a case study for predicting sentiment changes in the Stock Market. The objective of this dissertation is to develop a computational study and analyse its performance. The outputs will contribute to understand Deep Learning’s usage with Big Data and how it acts in Sentiment analysis.
publishDate 2021
dc.date.none.fl_str_mv 2021
2021-01-01T00:00:00Z
2022-01-07T16:33:58Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.22/19365
TID:202796310
url http://hdl.handle.net/10400.22/19365
identifier_str_mv TID:202796310
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799131483074461696