Incorporation of region of interest in a decomposition-based multi-objective evolutionary algorithm
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , , |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/1822/68643 |
Resumo: | Preference-based Multi-Objective Evolutionary Algorithm (MOEA) restrict the search to a given region of the Pareto front preferred by the Decision Maker (DM), called the Region of Interest (ROI). In this paper, a new preference-guided MOEA is proposed. In this method, we define the ROI as a preference cone in the objective space. The preferential direction and the aperture of the cone are parameters that the DM has to provide to define the ROI. Given the preference cone, we employ a weight vector generation method that is based on a steady-state evolutionary algorithm. The main idea of our method is to evolve a population of weight vectors towards the characteristics that are desirable for a set of weight vectors in a decomposition-based MOEA framework. The main advantage is that the DM can define the number of weight vectors and thus can control the population size. Once the ROI is defined and the set of weight vectors are generated within the preference cone, we start a decomposition-based MOEA using the provided set of weights in its initialization. Therefore, this enforces the algorithm to converge to the ROI. The results show the benefit and adequacy of the preference cone MOEA/D for preference-guided many-objective optimization. |
id |
RCAP_5b87161e4440bcca5603965c7208c5f2 |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/68643 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Incorporation of region of interest in a decomposition-based multi-objective evolutionary algorithmMOEA/DMulti-Objective OptimizationROIWeight VectorsCiências Naturais::Ciências da Computação e da InformaçãoPreference-based Multi-Objective Evolutionary Algorithm (MOEA) restrict the search to a given region of the Pareto front preferred by the Decision Maker (DM), called the Region of Interest (ROI). In this paper, a new preference-guided MOEA is proposed. In this method, we define the ROI as a preference cone in the objective space. The preferential direction and the aperture of the cone are parameters that the DM has to provide to define the ROI. Given the preference cone, we employ a weight vector generation method that is based on a steady-state evolutionary algorithm. The main idea of our method is to evolve a population of weight vectors towards the characteristics that are desirable for a set of weight vectors in a decomposition-based MOEA framework. The main advantage is that the DM can define the number of weight vectors and thus can control the population size. Once the ROI is defined and the set of weight vectors are generated within the preference cone, we start a decomposition-based MOEA using the provided set of weights in its initialization. Therefore, this enforces the algorithm to converge to the ROI. The results show the benefit and adequacy of the preference cone MOEA/D for preference-guided many-objective optimization.This work was supported by the Brazilian funding agencies CAPES and CNPq.SpringerUniversidade do MinhoReinaldo Meneghini, IvanGadelha Guimarães, FredericoGaspar-Cunha, A.Weiss Cohen, Miri20212021-01-01T00:00:00Zbook partinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/1822/68643engReinaldo Meneghini I., Gadelha Guimarães F., Gaspar-Cunha A., Weiss Cohen M. (2021) Incorporation of Region of Interest in a Decomposition-Based Multi-objective Evolutionary Algorithm. In: Gaspar-Cunha A., Periaux J., Giannakoglou K.C., Gauger N.R., Quagliarella D., Greiner D. (eds) Advances in Evolutionary and Deterministic Methods for Design, Optimization and Control in Engineering and Sciences. Computational Methods in Applied Sciences, vol 55. Springer, Cham. https://doi.org/10.1007/978-3-030-57422-2_3978-3-030-57421-51871-303310.1007/978-3-030-57422-2_3978-3-030-57422-2https://link.springer.com/chapter/10.1007%2F978-3-030-57422-2_3info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-05-11T06:16:06Zoai:repositorium.sdum.uminho.pt:1822/68643Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-05-11T06:16:06Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Incorporation of region of interest in a decomposition-based multi-objective evolutionary algorithm |
title |
Incorporation of region of interest in a decomposition-based multi-objective evolutionary algorithm |
spellingShingle |
Incorporation of region of interest in a decomposition-based multi-objective evolutionary algorithm Reinaldo Meneghini, Ivan MOEA/D Multi-Objective Optimization ROI Weight Vectors Ciências Naturais::Ciências da Computação e da Informação |
title_short |
Incorporation of region of interest in a decomposition-based multi-objective evolutionary algorithm |
title_full |
Incorporation of region of interest in a decomposition-based multi-objective evolutionary algorithm |
title_fullStr |
Incorporation of region of interest in a decomposition-based multi-objective evolutionary algorithm |
title_full_unstemmed |
Incorporation of region of interest in a decomposition-based multi-objective evolutionary algorithm |
title_sort |
Incorporation of region of interest in a decomposition-based multi-objective evolutionary algorithm |
author |
Reinaldo Meneghini, Ivan |
author_facet |
Reinaldo Meneghini, Ivan Gadelha Guimarães, Frederico Gaspar-Cunha, A. Weiss Cohen, Miri |
author_role |
author |
author2 |
Gadelha Guimarães, Frederico Gaspar-Cunha, A. Weiss Cohen, Miri |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Reinaldo Meneghini, Ivan Gadelha Guimarães, Frederico Gaspar-Cunha, A. Weiss Cohen, Miri |
dc.subject.por.fl_str_mv |
MOEA/D Multi-Objective Optimization ROI Weight Vectors Ciências Naturais::Ciências da Computação e da Informação |
topic |
MOEA/D Multi-Objective Optimization ROI Weight Vectors Ciências Naturais::Ciências da Computação e da Informação |
description |
Preference-based Multi-Objective Evolutionary Algorithm (MOEA) restrict the search to a given region of the Pareto front preferred by the Decision Maker (DM), called the Region of Interest (ROI). In this paper, a new preference-guided MOEA is proposed. In this method, we define the ROI as a preference cone in the objective space. The preferential direction and the aperture of the cone are parameters that the DM has to provide to define the ROI. Given the preference cone, we employ a weight vector generation method that is based on a steady-state evolutionary algorithm. The main idea of our method is to evolve a population of weight vectors towards the characteristics that are desirable for a set of weight vectors in a decomposition-based MOEA framework. The main advantage is that the DM can define the number of weight vectors and thus can control the population size. Once the ROI is defined and the set of weight vectors are generated within the preference cone, we start a decomposition-based MOEA using the provided set of weights in its initialization. Therefore, this enforces the algorithm to converge to the ROI. The results show the benefit and adequacy of the preference cone MOEA/D for preference-guided many-objective optimization. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021 2021-01-01T00:00:00Z |
dc.type.driver.fl_str_mv |
book part |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/1822/68643 |
url |
http://hdl.handle.net/1822/68643 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Reinaldo Meneghini I., Gadelha Guimarães F., Gaspar-Cunha A., Weiss Cohen M. (2021) Incorporation of Region of Interest in a Decomposition-Based Multi-objective Evolutionary Algorithm. In: Gaspar-Cunha A., Periaux J., Giannakoglou K.C., Gauger N.R., Quagliarella D., Greiner D. (eds) Advances in Evolutionary and Deterministic Methods for Design, Optimization and Control in Engineering and Sciences. Computational Methods in Applied Sciences, vol 55. Springer, Cham. https://doi.org/10.1007/978-3-030-57422-2_3 978-3-030-57421-5 1871-3033 10.1007/978-3-030-57422-2_3 978-3-030-57422-2 https://link.springer.com/chapter/10.1007%2F978-3-030-57422-2_3 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
mluisa.alvim@gmail.com |
_version_ |
1817544911294038016 |