An exploration of locally spherical regular hypertope
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/28644 |
Resumo: | Hypertope is a generalization of the concept of polytope, which in turn generalizes the concept of a map and hypermap, to higher rank objects. Regular hypertopes with spherical residues, which we call regular locally spherical hypertopes, must be either of spherical, euclidean, or hyperbolic type. That is, the type-preserving automorphism group of a locally spherical regular hypertope is a quotient of a finite irreducible, infinite irreducible, or compact hyperbolic Coxeter group. We classify the locally spherical regular hypertopes of spherical and euclidean type and investigate finite hypertopes of hyperbolic type, giving new examples and summarizing some known results. |
id |
RCAP_5c1c86750156fc1b619881e10e332f2e |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/28644 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
An exploration of locally spherical regular hypertopeRegularityThin geometriesHypermapsAbstract polytopesHypertope is a generalization of the concept of polytope, which in turn generalizes the concept of a map and hypermap, to higher rank objects. Regular hypertopes with spherical residues, which we call regular locally spherical hypertopes, must be either of spherical, euclidean, or hyperbolic type. That is, the type-preserving automorphism group of a locally spherical regular hypertope is a quotient of a finite irreducible, infinite irreducible, or compact hyperbolic Coxeter group. We classify the locally spherical regular hypertopes of spherical and euclidean type and investigate finite hypertopes of hyperbolic type, giving new examples and summarizing some known results.Springer Nature2021-06-03T00:00:00Z2020-06-03T00:00:00Z2020-06-03info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/28644eng0179-537610.1007/s00454-020-00209-9Fernandes, Maria ElisaLeemans, DimitriWeiss, Asia Ivićinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:55:24Zoai:ria.ua.pt:10773/28644Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:01:08.227070Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
An exploration of locally spherical regular hypertope |
title |
An exploration of locally spherical regular hypertope |
spellingShingle |
An exploration of locally spherical regular hypertope Fernandes, Maria Elisa Regularity Thin geometries Hypermaps Abstract polytopes |
title_short |
An exploration of locally spherical regular hypertope |
title_full |
An exploration of locally spherical regular hypertope |
title_fullStr |
An exploration of locally spherical regular hypertope |
title_full_unstemmed |
An exploration of locally spherical regular hypertope |
title_sort |
An exploration of locally spherical regular hypertope |
author |
Fernandes, Maria Elisa |
author_facet |
Fernandes, Maria Elisa Leemans, Dimitri Weiss, Asia Ivić |
author_role |
author |
author2 |
Leemans, Dimitri Weiss, Asia Ivić |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Fernandes, Maria Elisa Leemans, Dimitri Weiss, Asia Ivić |
dc.subject.por.fl_str_mv |
Regularity Thin geometries Hypermaps Abstract polytopes |
topic |
Regularity Thin geometries Hypermaps Abstract polytopes |
description |
Hypertope is a generalization of the concept of polytope, which in turn generalizes the concept of a map and hypermap, to higher rank objects. Regular hypertopes with spherical residues, which we call regular locally spherical hypertopes, must be either of spherical, euclidean, or hyperbolic type. That is, the type-preserving automorphism group of a locally spherical regular hypertope is a quotient of a finite irreducible, infinite irreducible, or compact hyperbolic Coxeter group. We classify the locally spherical regular hypertopes of spherical and euclidean type and investigate finite hypertopes of hyperbolic type, giving new examples and summarizing some known results. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-06-03T00:00:00Z 2020-06-03 2021-06-03T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/28644 |
url |
http://hdl.handle.net/10773/28644 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0179-5376 10.1007/s00454-020-00209-9 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Springer Nature |
publisher.none.fl_str_mv |
Springer Nature |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137667028353024 |