An exploration of locally spherical regular hypertope

Detalhes bibliográficos
Autor(a) principal: Fernandes, Maria Elisa
Data de Publicação: 2020
Outros Autores: Leemans, Dimitri, Weiss, Asia Ivić
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/28644
Resumo: Hypertope is a generalization of the concept of polytope, which in turn generalizes the concept of a map and hypermap, to higher rank objects. Regular hypertopes with spherical residues, which we call regular locally spherical hypertopes, must be either of spherical, euclidean, or hyperbolic type. That is, the type-preserving automorphism group of a locally spherical regular hypertope is a quotient of a finite irreducible, infinite irreducible, or compact hyperbolic Coxeter group. We classify the locally spherical regular hypertopes of spherical and euclidean type and investigate finite hypertopes of hyperbolic type, giving new examples and summarizing some known results.
id RCAP_5c1c86750156fc1b619881e10e332f2e
oai_identifier_str oai:ria.ua.pt:10773/28644
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling An exploration of locally spherical regular hypertopeRegularityThin geometriesHypermapsAbstract polytopesHypertope is a generalization of the concept of polytope, which in turn generalizes the concept of a map and hypermap, to higher rank objects. Regular hypertopes with spherical residues, which we call regular locally spherical hypertopes, must be either of spherical, euclidean, or hyperbolic type. That is, the type-preserving automorphism group of a locally spherical regular hypertope is a quotient of a finite irreducible, infinite irreducible, or compact hyperbolic Coxeter group. We classify the locally spherical regular hypertopes of spherical and euclidean type and investigate finite hypertopes of hyperbolic type, giving new examples and summarizing some known results.Springer Nature2021-06-03T00:00:00Z2020-06-03T00:00:00Z2020-06-03info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/28644eng0179-537610.1007/s00454-020-00209-9Fernandes, Maria ElisaLeemans, DimitriWeiss, Asia Ivićinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:55:24Zoai:ria.ua.pt:10773/28644Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:01:08.227070Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv An exploration of locally spherical regular hypertope
title An exploration of locally spherical regular hypertope
spellingShingle An exploration of locally spherical regular hypertope
Fernandes, Maria Elisa
Regularity
Thin geometries
Hypermaps
Abstract polytopes
title_short An exploration of locally spherical regular hypertope
title_full An exploration of locally spherical regular hypertope
title_fullStr An exploration of locally spherical regular hypertope
title_full_unstemmed An exploration of locally spherical regular hypertope
title_sort An exploration of locally spherical regular hypertope
author Fernandes, Maria Elisa
author_facet Fernandes, Maria Elisa
Leemans, Dimitri
Weiss, Asia Ivić
author_role author
author2 Leemans, Dimitri
Weiss, Asia Ivić
author2_role author
author
dc.contributor.author.fl_str_mv Fernandes, Maria Elisa
Leemans, Dimitri
Weiss, Asia Ivić
dc.subject.por.fl_str_mv Regularity
Thin geometries
Hypermaps
Abstract polytopes
topic Regularity
Thin geometries
Hypermaps
Abstract polytopes
description Hypertope is a generalization of the concept of polytope, which in turn generalizes the concept of a map and hypermap, to higher rank objects. Regular hypertopes with spherical residues, which we call regular locally spherical hypertopes, must be either of spherical, euclidean, or hyperbolic type. That is, the type-preserving automorphism group of a locally spherical regular hypertope is a quotient of a finite irreducible, infinite irreducible, or compact hyperbolic Coxeter group. We classify the locally spherical regular hypertopes of spherical and euclidean type and investigate finite hypertopes of hyperbolic type, giving new examples and summarizing some known results.
publishDate 2020
dc.date.none.fl_str_mv 2020-06-03T00:00:00Z
2020-06-03
2021-06-03T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/28644
url http://hdl.handle.net/10773/28644
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0179-5376
10.1007/s00454-020-00209-9
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Springer Nature
publisher.none.fl_str_mv Springer Nature
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137667028353024