Particle swarm optimization algorithm using complex-order derivative concept: A comprehensive study

Detalhes bibliográficos
Autor(a) principal: Abedi Pahnehkolaei, Seyed Mehdi
Data de Publicação: 2021
Outros Autores: Alfi, Alireza, Machado, J. A. Tenreiro
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.22/18635
Resumo: This paper presents a comprehensive study of the Particle Swarm Optimization (PSO) algorithm, called complex-order PSO (CPSO). In the core of new set of algorithms, we employ the complex-order derivative and the conjugate order differential concepts in the position and velocity adaption mechanisms. To determine the influence of the control parameters on the quality of the results, a sensitivity analysis is conducted. A number of value- and rank-based tests assesses the algorithms’ performance. For a suite of benchmark functions, the standard deviation and the mean best of the results are reported. Additionally, the Friedman test specifies the average ranking from the obtained results. The effect of the complex-order operation and the population size are analyzed using the Taguchi test. An application example illustrates the performance of the CPSO.
id RCAP_5c4088526d2c3599d1cfa131778735b4
oai_identifier_str oai:recipp.ipp.pt:10400.22/18635
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Particle swarm optimization algorithm using complex-order derivative concept: A comprehensive studyFractional calculusComplex-orderParticle swarm optimizationSensitivity analysisThis paper presents a comprehensive study of the Particle Swarm Optimization (PSO) algorithm, called complex-order PSO (CPSO). In the core of new set of algorithms, we employ the complex-order derivative and the conjugate order differential concepts in the position and velocity adaption mechanisms. To determine the influence of the control parameters on the quality of the results, a sensitivity analysis is conducted. A number of value- and rank-based tests assesses the algorithms’ performance. For a suite of benchmark functions, the standard deviation and the mean best of the results are reported. Additionally, the Friedman test specifies the average ranking from the obtained results. The effect of the complex-order operation and the population size are analyzed using the Taguchi test. An application example illustrates the performance of the CPSO.Repositório Científico do Instituto Politécnico do PortoAbedi Pahnehkolaei, Seyed MehdiAlfi, AlirezaMachado, J. A. Tenreiro20212031-12-01T00:00:00Z2021-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.22/18635eng10.1016/j.asoc.2021.107641info:eu-repo/semantics/embargoedAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-03-13T13:10:47Zoai:recipp.ipp.pt:10400.22/18635Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T17:38:11.678777Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Particle swarm optimization algorithm using complex-order derivative concept: A comprehensive study
title Particle swarm optimization algorithm using complex-order derivative concept: A comprehensive study
spellingShingle Particle swarm optimization algorithm using complex-order derivative concept: A comprehensive study
Abedi Pahnehkolaei, Seyed Mehdi
Fractional calculus
Complex-order
Particle swarm optimization
Sensitivity analysis
title_short Particle swarm optimization algorithm using complex-order derivative concept: A comprehensive study
title_full Particle swarm optimization algorithm using complex-order derivative concept: A comprehensive study
title_fullStr Particle swarm optimization algorithm using complex-order derivative concept: A comprehensive study
title_full_unstemmed Particle swarm optimization algorithm using complex-order derivative concept: A comprehensive study
title_sort Particle swarm optimization algorithm using complex-order derivative concept: A comprehensive study
author Abedi Pahnehkolaei, Seyed Mehdi
author_facet Abedi Pahnehkolaei, Seyed Mehdi
Alfi, Alireza
Machado, J. A. Tenreiro
author_role author
author2 Alfi, Alireza
Machado, J. A. Tenreiro
author2_role author
author
dc.contributor.none.fl_str_mv Repositório Científico do Instituto Politécnico do Porto
dc.contributor.author.fl_str_mv Abedi Pahnehkolaei, Seyed Mehdi
Alfi, Alireza
Machado, J. A. Tenreiro
dc.subject.por.fl_str_mv Fractional calculus
Complex-order
Particle swarm optimization
Sensitivity analysis
topic Fractional calculus
Complex-order
Particle swarm optimization
Sensitivity analysis
description This paper presents a comprehensive study of the Particle Swarm Optimization (PSO) algorithm, called complex-order PSO (CPSO). In the core of new set of algorithms, we employ the complex-order derivative and the conjugate order differential concepts in the position and velocity adaption mechanisms. To determine the influence of the control parameters on the quality of the results, a sensitivity analysis is conducted. A number of value- and rank-based tests assesses the algorithms’ performance. For a suite of benchmark functions, the standard deviation and the mean best of the results are reported. Additionally, the Friedman test specifies the average ranking from the obtained results. The effect of the complex-order operation and the population size are analyzed using the Taguchi test. An application example illustrates the performance of the CPSO.
publishDate 2021
dc.date.none.fl_str_mv 2021
2021-01-01T00:00:00Z
2031-12-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.22/18635
url http://hdl.handle.net/10400.22/18635
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1016/j.asoc.2021.107641
dc.rights.driver.fl_str_mv info:eu-repo/semantics/embargoedAccess
eu_rights_str_mv embargoedAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799131471782346752