Particle swarm optimization algorithm using complex-order derivative concept: A comprehensive study
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.22/18635 |
Resumo: | This paper presents a comprehensive study of the Particle Swarm Optimization (PSO) algorithm, called complex-order PSO (CPSO). In the core of new set of algorithms, we employ the complex-order derivative and the conjugate order differential concepts in the position and velocity adaption mechanisms. To determine the influence of the control parameters on the quality of the results, a sensitivity analysis is conducted. A number of value- and rank-based tests assesses the algorithms’ performance. For a suite of benchmark functions, the standard deviation and the mean best of the results are reported. Additionally, the Friedman test specifies the average ranking from the obtained results. The effect of the complex-order operation and the population size are analyzed using the Taguchi test. An application example illustrates the performance of the CPSO. |
id |
RCAP_5c4088526d2c3599d1cfa131778735b4 |
---|---|
oai_identifier_str |
oai:recipp.ipp.pt:10400.22/18635 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Particle swarm optimization algorithm using complex-order derivative concept: A comprehensive studyFractional calculusComplex-orderParticle swarm optimizationSensitivity analysisThis paper presents a comprehensive study of the Particle Swarm Optimization (PSO) algorithm, called complex-order PSO (CPSO). In the core of new set of algorithms, we employ the complex-order derivative and the conjugate order differential concepts in the position and velocity adaption mechanisms. To determine the influence of the control parameters on the quality of the results, a sensitivity analysis is conducted. A number of value- and rank-based tests assesses the algorithms’ performance. For a suite of benchmark functions, the standard deviation and the mean best of the results are reported. Additionally, the Friedman test specifies the average ranking from the obtained results. The effect of the complex-order operation and the population size are analyzed using the Taguchi test. An application example illustrates the performance of the CPSO.Repositório Científico do Instituto Politécnico do PortoAbedi Pahnehkolaei, Seyed MehdiAlfi, AlirezaMachado, J. A. Tenreiro20212031-12-01T00:00:00Z2021-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.22/18635eng10.1016/j.asoc.2021.107641info:eu-repo/semantics/embargoedAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-03-13T13:10:47Zoai:recipp.ipp.pt:10400.22/18635Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T17:38:11.678777Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Particle swarm optimization algorithm using complex-order derivative concept: A comprehensive study |
title |
Particle swarm optimization algorithm using complex-order derivative concept: A comprehensive study |
spellingShingle |
Particle swarm optimization algorithm using complex-order derivative concept: A comprehensive study Abedi Pahnehkolaei, Seyed Mehdi Fractional calculus Complex-order Particle swarm optimization Sensitivity analysis |
title_short |
Particle swarm optimization algorithm using complex-order derivative concept: A comprehensive study |
title_full |
Particle swarm optimization algorithm using complex-order derivative concept: A comprehensive study |
title_fullStr |
Particle swarm optimization algorithm using complex-order derivative concept: A comprehensive study |
title_full_unstemmed |
Particle swarm optimization algorithm using complex-order derivative concept: A comprehensive study |
title_sort |
Particle swarm optimization algorithm using complex-order derivative concept: A comprehensive study |
author |
Abedi Pahnehkolaei, Seyed Mehdi |
author_facet |
Abedi Pahnehkolaei, Seyed Mehdi Alfi, Alireza Machado, J. A. Tenreiro |
author_role |
author |
author2 |
Alfi, Alireza Machado, J. A. Tenreiro |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Repositório Científico do Instituto Politécnico do Porto |
dc.contributor.author.fl_str_mv |
Abedi Pahnehkolaei, Seyed Mehdi Alfi, Alireza Machado, J. A. Tenreiro |
dc.subject.por.fl_str_mv |
Fractional calculus Complex-order Particle swarm optimization Sensitivity analysis |
topic |
Fractional calculus Complex-order Particle swarm optimization Sensitivity analysis |
description |
This paper presents a comprehensive study of the Particle Swarm Optimization (PSO) algorithm, called complex-order PSO (CPSO). In the core of new set of algorithms, we employ the complex-order derivative and the conjugate order differential concepts in the position and velocity adaption mechanisms. To determine the influence of the control parameters on the quality of the results, a sensitivity analysis is conducted. A number of value- and rank-based tests assesses the algorithms’ performance. For a suite of benchmark functions, the standard deviation and the mean best of the results are reported. Additionally, the Friedman test specifies the average ranking from the obtained results. The effect of the complex-order operation and the population size are analyzed using the Taguchi test. An application example illustrates the performance of the CPSO. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021 2021-01-01T00:00:00Z 2031-12-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.22/18635 |
url |
http://hdl.handle.net/10400.22/18635 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1016/j.asoc.2021.107641 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
eu_rights_str_mv |
embargoedAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799131471782346752 |