SME credit application, a text classification approach
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/103801 |
Resumo: | Project Work presented as the partial requirement for obtaining a Master's degree in Statistics and Information Management, specialization in Marketing Research e CRM |
id |
RCAP_5c638b7c4ab41eb2df12aa467d0a01f6 |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/103801 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
SME credit application, a text classification approachNatural Language Processing (NLP)BankingCredit applicationSmall and medium enterprise (SME)Neural Networks (NN)Bi-directional Encoder Representations for Transformers (BERT)Project Work presented as the partial requirement for obtaining a Master's degree in Statistics and Information Management, specialization in Marketing Research e CRMDuring the SME credit application process a credit expert will give a specific recommendation to the credit commercial advisor. This recommendation can be classified as positive, negative or partial. This project aims to construct a text classifier model in order to give the recommendation text one of the categories mentioned before. To achieve this, two models are tested using state-of-the-art architecture called BERT proposed by Google in 2019. The first model will use single sentence BERT classification model as proposed by Google. The second model will use SBERT architecture, where BERT embedding model will be fine-tuned for the specific task, a max-pooling layer is added to extract a fixed size vector for all the document and work under fully connected network architecture. Results show that the second approach got better results regarding accuracy, precision and recall. Despite of the bunch of limitations of computational capacity, limited number of tagged examples and BERT maximum sequence length the model show a good first approach to solve the current problem.Castelli, MauroRUNLópez, Daniela Saavedra2020-09-09T14:13:59Z2020-07-132020-07-13T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/103801TID:202516008enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T04:49:28Zoai:run.unl.pt:10362/103801Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:40:04.650796Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
SME credit application, a text classification approach |
title |
SME credit application, a text classification approach |
spellingShingle |
SME credit application, a text classification approach López, Daniela Saavedra Natural Language Processing (NLP) Banking Credit application Small and medium enterprise (SME) Neural Networks (NN) Bi-directional Encoder Representations for Transformers (BERT) |
title_short |
SME credit application, a text classification approach |
title_full |
SME credit application, a text classification approach |
title_fullStr |
SME credit application, a text classification approach |
title_full_unstemmed |
SME credit application, a text classification approach |
title_sort |
SME credit application, a text classification approach |
author |
López, Daniela Saavedra |
author_facet |
López, Daniela Saavedra |
author_role |
author |
dc.contributor.none.fl_str_mv |
Castelli, Mauro RUN |
dc.contributor.author.fl_str_mv |
López, Daniela Saavedra |
dc.subject.por.fl_str_mv |
Natural Language Processing (NLP) Banking Credit application Small and medium enterprise (SME) Neural Networks (NN) Bi-directional Encoder Representations for Transformers (BERT) |
topic |
Natural Language Processing (NLP) Banking Credit application Small and medium enterprise (SME) Neural Networks (NN) Bi-directional Encoder Representations for Transformers (BERT) |
description |
Project Work presented as the partial requirement for obtaining a Master's degree in Statistics and Information Management, specialization in Marketing Research e CRM |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-09-09T14:13:59Z 2020-07-13 2020-07-13T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/103801 TID:202516008 |
url |
http://hdl.handle.net/10362/103801 |
identifier_str_mv |
TID:202516008 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799138016552288256 |