Advances in the optimisation of apparel heating products: A numerical approach to study heat transport through a blanket with an embedded smart heating system

Detalhes bibliográficos
Autor(a) principal: Soraia Neves
Data de Publicação: 2015
Outros Autores: Sandra Couto, João Campos, Tiago Santos
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: https://hdl.handle.net/10216/105779
Resumo: The optimisation of the performance of products with smart/active functionalities (e. g. in protective clothing, home textiles products, automotive seats, etc.) is still a challenge for manufacturers and developers. The aim of this study was to optimise the thermal performance of a heating product by a numerical approach, by analysing several opposing requirements and defining solutions for the identified limitations, before the construction of the first prototype. A transfer model was developed to investigate the transport of heat from the skin to the environment, across a heating blanket with an embedded smart heating system. Several parameters of the textile material and of the heating system were studied, in order to optimise the thermal performance of the heating blanket. Focus was put on the effects of thickness and thermal conductivity of each layer, and on parameters associated with the heating elements, e.g. position of the heating wires relative to the skin, distance between heating wires, applied heating power, and temperature range for operation of the heating system. Furthermore, several configurations of the blanket (and corresponding heating powers) were analysed in order to minimise the heat loss from the body to the environment and the temperature distribution along the skin. The results show that, to ensure an optimal compromise between the thermal performance of the product and the temperature oscillation along its surface, the distance between the wires should be small (and not bigger than 50 mm), and each layer of the heating blanket should have a specific thermal resistance, based on the expected external conditions during use and the requirements of the heating system (i.e. requirements regarding energy consumption/efficiency and capacity to effectively regulate body exchanges with surrounding environment). The heating system should operate in an ON/OFF mode based on the body heating needs and within a temperature range specified based on the blanket total thermal resistance, external temperature during use, and observed temperature on the blanket outer surface (safety and energy,efficiency aspects). The approach described in this work enabled the definition of the textile properties, the features of the embedded heating system, and the overall design of the system thus reducing substantially the number of prototypes needed for the final performance optimisation and fine-tuning.
id RCAP_5d29ba5a7a90034a6ef77912d3c7f395
oai_identifier_str oai:repositorio-aberto.up.pt:10216/105779
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Advances in the optimisation of apparel heating products: A numerical approach to study heat transport through a blanket with an embedded smart heating systemEngenharia químicaChemical engineeringThe optimisation of the performance of products with smart/active functionalities (e. g. in protective clothing, home textiles products, automotive seats, etc.) is still a challenge for manufacturers and developers. The aim of this study was to optimise the thermal performance of a heating product by a numerical approach, by analysing several opposing requirements and defining solutions for the identified limitations, before the construction of the first prototype. A transfer model was developed to investigate the transport of heat from the skin to the environment, across a heating blanket with an embedded smart heating system. Several parameters of the textile material and of the heating system were studied, in order to optimise the thermal performance of the heating blanket. Focus was put on the effects of thickness and thermal conductivity of each layer, and on parameters associated with the heating elements, e.g. position of the heating wires relative to the skin, distance between heating wires, applied heating power, and temperature range for operation of the heating system. Furthermore, several configurations of the blanket (and corresponding heating powers) were analysed in order to minimise the heat loss from the body to the environment and the temperature distribution along the skin. The results show that, to ensure an optimal compromise between the thermal performance of the product and the temperature oscillation along its surface, the distance between the wires should be small (and not bigger than 50 mm), and each layer of the heating blanket should have a specific thermal resistance, based on the expected external conditions during use and the requirements of the heating system (i.e. requirements regarding energy consumption/efficiency and capacity to effectively regulate body exchanges with surrounding environment). The heating system should operate in an ON/OFF mode based on the body heating needs and within a temperature range specified based on the blanket total thermal resistance, external temperature during use, and observed temperature on the blanket outer surface (safety and energy,efficiency aspects). The approach described in this work enabled the definition of the textile properties, the features of the embedded heating system, and the overall design of the system thus reducing substantially the number of prototypes needed for the final performance optimisation and fine-tuning.20152015-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/10216/105779eng1359-431110.1016/j.applthermaleng.2015.05.035Soraia NevesSandra CoutoJoão CamposTiago Santosinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-29T13:00:58Zoai:repositorio-aberto.up.pt:10216/105779Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T23:31:48.983796Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Advances in the optimisation of apparel heating products: A numerical approach to study heat transport through a blanket with an embedded smart heating system
title Advances in the optimisation of apparel heating products: A numerical approach to study heat transport through a blanket with an embedded smart heating system
spellingShingle Advances in the optimisation of apparel heating products: A numerical approach to study heat transport through a blanket with an embedded smart heating system
Soraia Neves
Engenharia química
Chemical engineering
title_short Advances in the optimisation of apparel heating products: A numerical approach to study heat transport through a blanket with an embedded smart heating system
title_full Advances in the optimisation of apparel heating products: A numerical approach to study heat transport through a blanket with an embedded smart heating system
title_fullStr Advances in the optimisation of apparel heating products: A numerical approach to study heat transport through a blanket with an embedded smart heating system
title_full_unstemmed Advances in the optimisation of apparel heating products: A numerical approach to study heat transport through a blanket with an embedded smart heating system
title_sort Advances in the optimisation of apparel heating products: A numerical approach to study heat transport through a blanket with an embedded smart heating system
author Soraia Neves
author_facet Soraia Neves
Sandra Couto
João Campos
Tiago Santos
author_role author
author2 Sandra Couto
João Campos
Tiago Santos
author2_role author
author
author
dc.contributor.author.fl_str_mv Soraia Neves
Sandra Couto
João Campos
Tiago Santos
dc.subject.por.fl_str_mv Engenharia química
Chemical engineering
topic Engenharia química
Chemical engineering
description The optimisation of the performance of products with smart/active functionalities (e. g. in protective clothing, home textiles products, automotive seats, etc.) is still a challenge for manufacturers and developers. The aim of this study was to optimise the thermal performance of a heating product by a numerical approach, by analysing several opposing requirements and defining solutions for the identified limitations, before the construction of the first prototype. A transfer model was developed to investigate the transport of heat from the skin to the environment, across a heating blanket with an embedded smart heating system. Several parameters of the textile material and of the heating system were studied, in order to optimise the thermal performance of the heating blanket. Focus was put on the effects of thickness and thermal conductivity of each layer, and on parameters associated with the heating elements, e.g. position of the heating wires relative to the skin, distance between heating wires, applied heating power, and temperature range for operation of the heating system. Furthermore, several configurations of the blanket (and corresponding heating powers) were analysed in order to minimise the heat loss from the body to the environment and the temperature distribution along the skin. The results show that, to ensure an optimal compromise between the thermal performance of the product and the temperature oscillation along its surface, the distance between the wires should be small (and not bigger than 50 mm), and each layer of the heating blanket should have a specific thermal resistance, based on the expected external conditions during use and the requirements of the heating system (i.e. requirements regarding energy consumption/efficiency and capacity to effectively regulate body exchanges with surrounding environment). The heating system should operate in an ON/OFF mode based on the body heating needs and within a temperature range specified based on the blanket total thermal resistance, external temperature during use, and observed temperature on the blanket outer surface (safety and energy,efficiency aspects). The approach described in this work enabled the definition of the textile properties, the features of the embedded heating system, and the overall design of the system thus reducing substantially the number of prototypes needed for the final performance optimisation and fine-tuning.
publishDate 2015
dc.date.none.fl_str_mv 2015
2015-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/10216/105779
url https://hdl.handle.net/10216/105779
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 1359-4311
10.1016/j.applthermaleng.2015.05.035
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799135628523208704