Machine learning prediction of mortality in Acute Myocardial Infarction
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/151915 |
Resumo: | Oliveira, M., Seringa, J., Pinto, F. J., Henriques, R., & Magalhães, T. (2023). Machine learning prediction of mortality in Acute Myocardial Infarction. BMC Medical Informatics and Decision Making, 23(1), 1-16. [70]. https://doi.org/10.1186/s12911-023-02168-6. --- The present publication was funded by Fundação Ciência e Tecnologia, IP national support through CHRC (UIDP/04923/2020). The funding body did not played any roles in the design of the study and collection, analysis, and interpretation of data and in writing the manuscript. |
id |
RCAP_5d387a4ecfb43e03b759fb2068f313a3 |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/151915 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Machine learning prediction of mortality in Acute Myocardial InfarctionMachine learningCardiovascular diseasesAcute Myocardial InfarctionPredictive modelsHealth PolicyHealth InformaticsComputer Science ApplicationsSDG 3 - Good Health and Well-beingOliveira, M., Seringa, J., Pinto, F. J., Henriques, R., & Magalhães, T. (2023). Machine learning prediction of mortality in Acute Myocardial Infarction. BMC Medical Informatics and Decision Making, 23(1), 1-16. [70]. https://doi.org/10.1186/s12911-023-02168-6. --- The present publication was funded by Fundação Ciência e Tecnologia, IP national support through CHRC (UIDP/04923/2020). The funding body did not played any roles in the design of the study and collection, analysis, and interpretation of data and in writing the manuscript.Abstract Background Acute Myocardial Infarction (AMI) is the leading cause of death in Portugal and globally. The present investigation created a model based on machine learning for predictive analysis of mortality in patients with AMI upon admission, using different variables to analyse their impact on predictive models. Methods Three experiments were built for mortality in AMI in a Portuguese hospital between 2013 and 2015 using various machine learning techniques. The three experiments differed in the number and type of variables used. We used a discharged patients’ episodes database, including administrative data, laboratory data, and cardiac and physiologic test results, whose primary diagnosis was AMI. Results Results show that for Experiment 1, Stochastic Gradient Descent was more suitable than the other classification models, with a classification accuracy of 80%, a recall of 77%, and a discriminatory capacity with an AUC of 79%. Adding new variables to the models increased AUC in Experiment 2 to 81% for the Support Vector Machine method. In Experiment 3, we obtained an AUC, in Stochastic Gradient Descent, of 88% and a recall of 80%. These results were obtained when applying feature selection and the SMOTE technique to overcome imbalanced data. Conclusions Our results show that the introduction of new variables, namely laboratory data, impacts the performance of the methods, reinforcing the premise that no single approach is adapted to all situations regarding AMI mortality prediction. Instead, they must be selected, considering the context and the information available. Integrating Artificial Intelligence (AI) and machine learning with clinical decision-making can transform care, making clinical practice more efficient, faster, personalised, and effective. AI emerges as an alternative to traditional models since it has the potential to explore large amounts of information automatically and systematically.Escola Nacional de Saúde Pública (ENSP)NOVA Information Management School (NOVA IMS)Information Management Research Center (MagIC) - NOVA Information Management SchoolComprehensive Health Research Centre (CHRC) - Pólo ENSPCentro de Investigação em Saúde Pública (CISP/PHRC)RUNOliveira, MarianaSeringa, JoanaPinto, Fausto JoséHenriques, RobertoMagalhães, Teresa2023-04-18T22:21:01Z2023-04-182023-04-18T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article16application/pdfhttp://hdl.handle.net/10362/151915eng1472-6947PURE: 58591118https://doi.org/10.1186/s12911-023-02168-6info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:34:16Zoai:run.unl.pt:10362/151915Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:54:43.481249Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Machine learning prediction of mortality in Acute Myocardial Infarction |
title |
Machine learning prediction of mortality in Acute Myocardial Infarction |
spellingShingle |
Machine learning prediction of mortality in Acute Myocardial Infarction Oliveira, Mariana Machine learning Cardiovascular diseases Acute Myocardial Infarction Predictive models Health Policy Health Informatics Computer Science Applications SDG 3 - Good Health and Well-being |
title_short |
Machine learning prediction of mortality in Acute Myocardial Infarction |
title_full |
Machine learning prediction of mortality in Acute Myocardial Infarction |
title_fullStr |
Machine learning prediction of mortality in Acute Myocardial Infarction |
title_full_unstemmed |
Machine learning prediction of mortality in Acute Myocardial Infarction |
title_sort |
Machine learning prediction of mortality in Acute Myocardial Infarction |
author |
Oliveira, Mariana |
author_facet |
Oliveira, Mariana Seringa, Joana Pinto, Fausto José Henriques, Roberto Magalhães, Teresa |
author_role |
author |
author2 |
Seringa, Joana Pinto, Fausto José Henriques, Roberto Magalhães, Teresa |
author2_role |
author author author author |
dc.contributor.none.fl_str_mv |
Escola Nacional de Saúde Pública (ENSP) NOVA Information Management School (NOVA IMS) Information Management Research Center (MagIC) - NOVA Information Management School Comprehensive Health Research Centre (CHRC) - Pólo ENSP Centro de Investigação em Saúde Pública (CISP/PHRC) RUN |
dc.contributor.author.fl_str_mv |
Oliveira, Mariana Seringa, Joana Pinto, Fausto José Henriques, Roberto Magalhães, Teresa |
dc.subject.por.fl_str_mv |
Machine learning Cardiovascular diseases Acute Myocardial Infarction Predictive models Health Policy Health Informatics Computer Science Applications SDG 3 - Good Health and Well-being |
topic |
Machine learning Cardiovascular diseases Acute Myocardial Infarction Predictive models Health Policy Health Informatics Computer Science Applications SDG 3 - Good Health and Well-being |
description |
Oliveira, M., Seringa, J., Pinto, F. J., Henriques, R., & Magalhães, T. (2023). Machine learning prediction of mortality in Acute Myocardial Infarction. BMC Medical Informatics and Decision Making, 23(1), 1-16. [70]. https://doi.org/10.1186/s12911-023-02168-6. --- The present publication was funded by Fundação Ciência e Tecnologia, IP national support through CHRC (UIDP/04923/2020). The funding body did not played any roles in the design of the study and collection, analysis, and interpretation of data and in writing the manuscript. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-04-18T22:21:01Z 2023-04-18 2023-04-18T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/151915 |
url |
http://hdl.handle.net/10362/151915 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1472-6947 PURE: 58591118 https://doi.org/10.1186/s12911-023-02168-6 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
16 application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799138135919034368 |